Math, asked by avinashgautam933, 6 months ago

the curved surface area of cylindrical pillar is 264 and volume is 924 find the radius and height​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
28

\displaystyle\large\underline{\sf\red{Given}}

✭ CSA of the cylinder is 264

✭ Volume of the cylinder is 924

\displaystyle\large\underline{\sf\blue{To \ Find}}

◈ The Radius and the height?

\displaystyle\large\underline{\sf\gray{Solution}}

CSA of a cylinder is given by,

\displaystyle\underline{\boxed{\sf CSA_{cylinder} = 2\pi rh }}

Volume of the cylinder is given by,

\displaystyle\underline{\boxed{\sf Volume_{cylinder} = \pi r^2h}}

━━━━━━━━━

\underline{\bigstar\:\textsf{According to the given Question :}}

\displaystyle\sf CSA_{cylinder} = 2\pi rh

\displaystyle\sf 264 = 2\times\dfrac{22}{7}\times r\times h

\displaystyle\sf \dfrac{264 \times 7}{44} = r\times h

\displaystyle\sf \dfrac{1848}{44} = r\times h

\displaystyle\sf 42 = r\times h

\displaystyle\sf h = \dfrac{42}{r}\:\:\:-eq(1)

So then,

»» \displaystyle\sf Volume_{cylinder} = \pi r^2h

»» \displaystyle\sf 924 = \dfrac{22}{7} \times r^2\times \dfrac{42}{r}

»» \displaystyle\sf 924 = \dfrac{22}{7} \times r\times 42

»» \displaystyle\sf 924\times 7 = 924r

»» \displaystyle\sf 6468 = 924r

»» \displaystyle\sf \dfrac{6468}{924} = r

»» \displaystyle\sf\orange{Radius = 7}

From eq(1)

\displaystyle\sf h = \dfrac{42}{r}

\displaystyle\sf h = \dfrac{42}{7}

\displaystyle\sf\pink{Height = 6}

\displaystyle\therefore\:\underline{\sf The \ height \ is \ 6 \ \& \ radius \ is \ 7}

━━━━━━━━━━━━━━━━━━

Similar questions