Math, asked by adityamagar45, 5 months ago

The curved surface of a cone is 204.1 sq cm and it's radius is 5 cm . What is its perpendicular height ? ( IT =3.14)​

Answers

Answered by Anonymous
41

Given:-

  • Curved Surface Area of the cone is 204.1 cm²
  • Radius of cone = 5 cm

To Find:-

  • Perpendicular height of the cone.

Note:-

  • Refer to the attachment attached.

Solution:-

From the attachment we can clearly see:-

  • OC = 5 cm (Radius)

We know,

\dag\underline{\pink{\boxed{\blue{\bf{Curved\:Surface\:Area\:of\:Cone = \pi rl}}}}}

Hence,

\sf{204.1 = 3.14\times 5 \times l}

 = \sf{\dfrac{204.1}{3.14 \times 5} = l}

 = \sf{\dfrac{65}{5} = l}

 = \sf{l = 13}

\underline{\boxed{\red{\bf{\therefore\:The\:Slant\:height\:of\:the\:Cone\:is\:13\:cm}}}}

Now,

We have,

  • OC = 5 cm
  • AC = 13 cm

\sf{\underline{\underline{\pink{According\:to\:Pythagoras\:Theorem}}}}

(AO)² = (AC)² - (OC)²

 = \sf{AO = \sqrt{(AC)^2 - (OC)^2}}

 = \sf{AO = \sqrt{(13)^2 - (5)^2}}

 = \sf{AO = \sqrt{169 - 25}}

 = \sf{AO = \sqrt{144}}

 = \sf{AO = 12}

\underline{\pink{\boxed{\green{\bf{\therefore\:The\:length\:of\:perpendicular\:height\:of\:the\:cone\:is\:12\:cm}}}}}

______________________________________

Attachments:
Answered by Anonymous
102

Given :-

\\

  • Curverd Surface Area of the cone is 204.1 cm².
  • Radius of cone = 5 cm

\\

To find :-

\\

  • Find the Perpendicular height of the cone.

\\

\large\underline{\frak{As \: we \: know \: that, }}

\large\dagFormula Used

  • \boxed{\bf{Curverd~Surface ~Area ~of~ Cone~ =~ πrl}}

\\

Solution :-

\\

  • OC = 5cm ( Radius )

\\

\large\dag Hence forth,

\\

:\implies204.1 = 3.14 × 5 × L

\\

~~~~~:\implies \large{\sf{\frac{204.1}{3.14  \:  \times  \: 5}}}= L

\\

~~~~~~~~~~:\implies\large{\sf{\frac{65}{5}}}= L

\\

~~~~~~~~~~~~~~~:\implies{\cancel{\dfrac{65}{5}}} = L

\\

~~~~~~~~~~~~~~~~~~~~:\implies{\underline{\boxed{\pink{\frak{L~=~13}}}}}

\\

\large\dag Hence,

\\

  • The Slant height of the Cone is = \large{\rm{13~cm}}

\\

Now,

  • \leadstoOC = 5cm
  • \leadstoAC = 13cm

\\

According to Pythagoras Theorem,

:\implies(AO)² = (AC)² - (OC)2

\\

~~~~~:\impliesAO = {\sf{\sqrt{(AC {)}^{2}   \:  -  \:  (OC {)}^{2} } }}

\\

~~~~~~~~~~:\impliesAO = {\sf{\sqrt{(13{)}^{2}  \:  -  \:  (5 {)}^{2} } }}

\\

~~~~~~~~~~~~~~~:\implies {\sf{\sqrt{169 \:  -  \: 25} }}

\\

~~~~~~~~~~~~~~~~~~~~:\impliesAO =  {\sf{\sqrt{144} }}

\\

~~~~~~~~~~~~~~~~~~~~~~~~~:\implies{\underline{\boxed{\pink{\frak{AO~=~12}}}}}

\\

\large\dag Hence Verified,

\\

  • The Length of Perpendicular Height of the Cone is \large\underline{\rm{12~cm}}
Attachments:
Similar questions