Math, asked by CupcakesHugs, 4 months ago

The cylindrical end of a pencil is sharpened to produce a perfect cone at the end with no overall loss of length . If the diameter of the pencil is 1cm , and the cone is of length 2cm,calculate the volume of the shavings .​

Answers

Answered by Anonymous
25

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\huge\boxed{\bf{\red{\fcolorbox{blue}{white}{Answer}}}}

 \sf \scriptsize{Diameter \:  of \:  the \:  pencil  \: (✏ )=  \: 1 cm } \\   \sf \scriptsize{ \implies \: radius \: of \: the \: pencil ,\:  \: r \:  \:  = 0.5 \: cm}

 \sf \scriptsize{Length  \: of \:  the \:  conical  \: portion \:  = h = 2 cm. }

 \sf \scriptsize{Volume  \: of  \: shaving \:  = Volume  \: of \:  the \:  cylindrical  \: pencil  \: of  \: length  \:2 cm \: without \: sharping \: it \:  -Volume  \: of \: the \: conical \: portion \: after \: sharping \: it.} \\  \sf \scriptsize{ = Volume \: of \: cylinder \: of \: lenth \: 2 \: cm \: and \: its \: base \: radius \: 0.5 \: cm \:  - Volume \: of \: the \: cone \: formed \: by \: this \: cylinder.} \\  \sf \scriptsize{ = \pi \: r^{2}h -  \frac{1}{3}\pi \: r^{2}h    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \sf \scriptsize{ =  \frac{2}{3}  \times  \frac{355}{113} \times (0.5) ^{2} \times 2 \: cm^{3} = 1.05 \: cm ^{3}     \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \sf  \scriptsize\red{ = 1.05 \: cm ^{3} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions