Math, asked by ajay9995, 9 months ago

The daily saving of 50 woman workers of a factory are tabulated as follows

daily wages 101-121, 121-140, 141-160, 161-180, 180-200

no of women workers

15, 10, 7 , 12, 6

find the daily mean saving of 50 woman workers of a factory are tabulated as follow​

Answers

Answered by MrAtomic
2

Answer:Here is your Answer

Step-by-step explanation:

Attachments:
Answered by stefangonzalez246
1

The daily mean saving of 50 woman workers of a factory is 138.2431

Given

To find mean saving of 50 woman workers of a factory

Daily wages  No of women workers  

                                f_{i}                          x_{i\\}            d           y_{i}                f_{i\\} × y_{i}                        

101 - 121                    15                        111         - 39.5    -1.975         -29.625

121 - 140                   10                       130.5     - 20       -1.052         -10.52

141 - 160                    7                       150.5        0             0                 0

161 - 180                   12                       170.5       20        1.052            21.04

180 - 200                  6                        190         39.5      1.975            11.85

                        ∑f_{i}    50                                                         ∑f_{i} × y_{i}   -7.255

Daily wages range be "h" as below:

101 - 121  contains 20 numbers

121 - 140 contains 19 numbers

141 - 160 contains 19 numbers

161 - 180 contains 19 numbers

180 - 200 contains 20 numbers.

No of women workers values be f_{i}.

Daily wages mean number be x_{i}. For example, take ( 101 - 121 ) it consists of (101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121) from these numbers take the mean value which is "111".Same procedure for remaining values.

To find values for "d" column

                    d = x_{i} - average of x_{i}

                    Average of x_{i} = 150.5

  ( 101 - 121 )       d = 111 - 150.5      =   - 39.5

  ( 121 - 140 )      d = 130.5 - 150.5 =    - 20

  ( 141 - 160 )      d = 150.5 - 150.5 =      0

  ( 161 - 180 )      d = 170.5 - 150.5 =      20

  ( 180 - 200 )    d = 190 - 150.5    =     39.5

To find values for "y_{i}" column

                      y_{i} = \frac{d}{h}

"h" values are taken from the daily wages range

( 101 - 121 )      y_{i} = \frac{- 39.5}{20}   = - 1.975

( 121 - 140 )     y_{i} = \frac{- 20}{19}     =  - 1.052

( 141 - 160 )     y_{i} =   \frac{0}{19}      =       0

( 161 - 180 )     y_{i} =   \frac{20}{19}      =  1.052

( 180 - 200)    y_{i} =  \frac{39.5}{20}     =   1.975

To calculate f_{i} ×y_{i}

( 101 - 121 )      f_{i} × y_{i} = 15 × -1.975      =   - 29.625

( 121 - 140 )     f_{i} × y_{i} =  10 × -1.052     =   - 10.52

( 141 - 160 )     f_{i} × y_{i} =   7  ×   0          =         0

( 161 - 180 )     f_{i} × y_{i} =   12  × 1.052   =        21.04

( 180 - 200)    f_{i} × y_{i} =    6 ×  1.975    =        11.85

f_{i} ×y_{i}  adding - 29.625 - 10.52 + 0 + 21.04 + 11.85 = -7.255

f_{i} add no of woman working 15 +10 +7+ 12 + 6 = 50

d1 is the average range = 141.

h is the average range = 19

                   Mean = d1 + ∑\frac{f_{i} y_{i}  }{f_{i} } × h

                   Mean = 141 + (\frac{- 7.255}{50} ) × 19

                             = 141 + ( - 0.1451 ) × 19    

                             = 141  - 0.1451 × 19

                             = 141 - 2.7569

                             = 138.2431

Hence, the daily mean saving of 50 woman workers of a factory is 138.2431

To learn more...

The daily saving of 50 woman workers of a factory are tabulated as follows

daily wages 101-121, 121-140, 141-160, 161-180, 180-200

no of women workers

15, 10, 7 , 12, 6

find the daily mean saving of 50 woman workers of a factory are tabulated as follow​

brainly.in/question/14840675

Similar questions