Physics, asked by kasikayal2001, 1 year ago

The de broglie eavelength of a photon is twice that of electron.The speed of electron is c/100.The
Ee/Ep=10^(-4)
Ee/Ep =10^(-2)

Answers

Answered by Anonymous
25

Correct Question

The De Beogile wavelength of a photon is twice that of an electron. The speed of electron is c/100. The ratio of their energies would be :

Solution

Given :

  • The wavelength of the photon is twice that of an electron

  • The speed of electron is c/100

Assume the wavelength of the electron to be \lambda. Implies,the wavelength of the photon would be \sf 2 \lambda

\rule{300}{2}

We know that,

 \huge{ \boxed{ \boxed{ \sf{E = h \:  \nu}}}}

\sf{Here}\begin{cases}\sf{E \longrightarrow Energy} \\ \sf{h \longrightarrow Planck's \ constant} \\ \sf{\nu \longrightarrow Frequency }\end{cases}

Also,

 \large{ \boxed{ \boxed{ \sf{ \nu \:  =   \dfrac{c}{ \lambda} }}}}

\sf{Here} \begin{cases} \sf{c \longrightarrow Speed \ of \ Light} \\ \sf{\lambda \longrightarrow Wavelength} \end{cases}

Implies

 \longmapsto \:   \boxed{ \boxed{\sf \: E =  \dfrac{hc}{ \lambda} }}

\rule{300}{2}

For the photon,

 \tt{E_p =  \dfrac{hc}{2 \lambda}  -  -  -  -  -  -  - (1)}

For the electron,

 \tt{E_e =  \dfrac{hc}{100 \lambda} -  -  -  -  -  -  -  - (2) }

Dividing equations (1) and (2),we get :

 \implies \:  \sf{ \dfrac{E_p}{E_e}  =  \dfrac{hc}{2 \lambda}  \times  \dfrac{100 \lambda}{hc} } \\  \\  \implies \:  \underline{ \boxed{ \sf{E_p \:  \colon \: E_e = 50 \:  \colon \: 1}}}

The ratio of their energies is 50 : 1

\rule{300}{2}

\rule{300}{2}

Similar questions