Chemistry, asked by prishajain2004, 9 months ago

the de broglie wavelength of the electron ejected out when the radiation of energy 'E' strikes on the metal surface having threshold frequency equal to half of incident frequency is?

Answers

Answered by nirman95
3

Given:

The radiation of energy 'E' strikes on the metal surface having threshold frequency equal to half of incident frequency.

To find:

De-Broglie wavelength of ejected electron.

Calculation:

Incident radiation has energy E , hence :

 \rm{E = hf \:  \:  \: .......(1)}

Let threshold value be E2 , hence :

 \rm{E2 = h \times ( \dfrac{f}{2}) \:  \:  \: .......(2)}

From Equations (1) and (2) :

  \rm{\therefore \: E2 =  \dfrac{E}{2} }

Now, applying Photo-Electric Effect Equation:

 \rm{KE = E - threshold \: energy}

 \rm{ =  > KE = E - E2}

 \rm{ =  > KE = E -  \dfrac{E}{2}}

 \rm{ =  > KE =  \dfrac{E}{2}}

Now , we know that De-Broglie wavelength be :

 \rm{ \therefore \:  \lambda =  \dfrac{h}{mv} }

 \rm{  =  > \:  \lambda =  \dfrac{h}{ \sqrt{2m(KE)} } }

 \rm{  =  > \:  \lambda =  \dfrac{h}{ \sqrt{2m( \frac{E}{2} )} } }

 \rm{  =  > \:  \lambda =  \dfrac{h}{ \sqrt{mE} } }

So , final answer is :

 \boxed{ \green{ \large{ \rm{ \:  \lambda =  \dfrac{h}{ \sqrt{mE} } }}}}

Answered by Lueenu22
0

Explanation:

Given:

The radiation of energy 'E' strikes on the metal surface having threshold frequency equal to half of incident frequency.

To find:

De-Broglie wavelength of ejected electron.

Calculation:

Incident radiation has energy E , hence :

\rm{E = hf \: \: \: .......(1)}E=hf.......(1)

Let threshold value be E2 , hence :

\rm{E2 = h \times ( \dfrac{f}{2}) \: \: \: .......(2)}E2=h×(

2

f

).......(2)

From Equations (1) and (2) :

\rm{\therefore \: E2 = \dfrac{E}{2} }∴E2=

2

E

Now, applying Photo-Electric Effect Equation:

\rm{KE = E - threshold \: energy}KE=E−thresholdenergy

\rm{ = > KE = E - E2}=>KE=E−E2

\rm{ = > KE = E - \dfrac{E}{2}}=>KE=E−

2

E

\rm{ = > KE = \dfrac{E}{2}}=>KE=

2

E

Now , we know that De-Broglie wavelength be :

\rm{ \therefore \: \lambda = \dfrac{h}{mv} }∴λ=

mv

h

\rm{ = > \: \lambda = \dfrac{h}{ \sqrt{2m(KE)} } }=>λ=

2m(KE)

h

\rm{ = > \: \lambda = \dfrac{h}{ \sqrt{2m( \frac{E}{2} )} } }=>λ=

2m(

2

E

)

h

\rm{ = > \: \lambda = \dfrac{h}{ \sqrt{mE} } }=>λ=

mE

h

So , final answer is :

\boxed{ \green{ \large{ \rm{ \: \lambda = \dfrac{h}{ \sqrt{mE} } }}}}

λ=

mE

h

Similar questions