Math, asked by tanishkasuryawanshi2, 9 months ago

The decimal form of 1 /999 in non-terminating recurring

Answers

Answered by anjali620
1

0.001001001...........

Answered by amitnrw
0

Given :  1/999

To Find : Decimal Form

Solution:

 1/999  = 1/(3 * 3 * 3 * 37)

As denominator has  prime factors other than 2 and 5 hence decimal expansion will be non terminating recurring

                       0.001          

          999 )    1.000    (

                       0

                      ___

                        10

                          0

                        ____

                          100

                              0

                         ______

                           1000

                             999

                             _____

                                  1

Remainder is repeated

Hence 1/999  = 0.001...

decimal form of 1/999   is   0.\overline{001}  

Learn More:

Decimal expansion of a rational number Fill in the blanks hair ...

brainly.in/question/10914508

1. The decima expansion of27/15000 terminate afterhow many ...

brainly.in/question/18225164

Similar questions