Math, asked by SonuSinha8816, 1 year ago

The denominator of a fraction exceeds its numerator by 3.If 1 is added to both numerator and denominator yhe difference between new and originalfractions is 1/24 .find the original fraction

Answers

Answered by adityanarayan4p4ul16
34
let the denominator of a fraction be =x
let the numerator of a fraction be =x+3
required fraction=x+3/x
new fraction=x+3+1/x+1
=x+4/x+1
A/Q
x+3/x - x+4/x+1 =1/24
(x+3)(x+1)-(x)(x+4)/x(x+1)=1/24
x2+x+3x+3-x2-4x/x2+x=1/24
3/x2+x=1/24
3×24=x2+x
72=x2+x
0=x2+x-72
0=x2+9x-8x-72
0=x(x+9)-8(x+9)
0=(x+9)(x-8)
let x+9=0 and x-8=0
x= -9 and x=8
• •
• denominator can not be negative

• •denominator=x=8
and numerator=x+3=8+3=11
required fraction=11/8
Answered by wifilethbridge
20

Answer:

The fraction can be \frac{5}{8}  or \frac{4}{3}

Step-by-step explanation:

Let the numerator be x

The denominator of a fraction exceeds its numerator by 3.

Denominator = x+3

Fraction : \frac{x}{x+3}

1 is added to both numerator and denominator

So, Fraction becomes:  \frac{x+1}{x+3+1}

                                        \frac{x+1}{x+4}

Now we are given that difference between new and original fraction is 1/24

So, \frac{x+1}{x+4}-\frac{x}{x+3}=\frac{1}{24}

\frac{3}{x^2+7x+12}=\frac{1}{24}

24 \times 3=x^2+7x+12

72=x^2+7x+12

x^2+7x+12-72=0

x^2+7x-60=0

x^2+12x-5x-60=0

x(x+12)-5(x+12)=0

(x-5)(x+12)=0

x=5,-12

when x = 5

Fraction : \frac{x}{x+3} =\frac{5}{8}

when x = -12

Fraction : \frac{x}{x+3} =\frac{-12}{-12+3}=\frac{-12}{-9}=\frac{4}{3}

So, the fraction can be \frac{5}{8}  or \frac{4}{3}

Similar questions