Math, asked by Ayuzawa, 5 months ago


The denominator of a fraction is 1 more than double the numerator. On adding 2 to the numerator
and subtracting 3 from the denominator, we obtain 1. Find the original fraction.

Answers

Answered by InfiniteSoul
29

\sf{\bold{\green{\underline{\underline{Given}}}}}

⠀⠀⠀⠀

  • The denominator of a fraction is 1 more double than the numerator
  • on adding 2 to the numerator and subtracting 3 from the denominator we obtain 1

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

⠀⠀⠀⠀

  • Original fraction = ??

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

⠀⠀⠀⠀

let Numerator be x

⠀⠀⠀⠀

Therefore ; Denominator = 2x + 1

⠀⠀⠀⠀

Acc. to the given statement :-

⠀⠀⠀⠀

\sf : \implies\: {\bold{  \dfrac{x + 2 }{2x + 1 - 3 } = \dfrac{1}{1} }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{  \dfrac{x + 2 }{2x - 2 } = \dfrac{1}{1} }}

⠀⠀⠀

\sf : \implies\: {\bold{  1\times ( x + 2 )  = 1( 2x - 2 ) }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{ x + 2 = 2x - 2 }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{ 2 + 2  = 2x - x  }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{ x = 2+2 }}

⠀⠀⠀⠀

\sf : \implies\: {\bold{  x = 4 }}

⠀⠀⠀⠀

  • Putting value of x in the fraction

⠀⠀⠀⠀

Numerator = x = 4

⠀⠀⠀⠀

Denominator = 2x + 1 = 2 ×4 + 1 = 8 + 1 = 9

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

⠀⠀⠀⠀

  • Original fraction = 4 / 9
Answered by Anonymous
20

Answer:

{ \huge {\bf {\underline {answer}}}}

Let:-

Numerator = y

Denominator = 2y + 1

Then,

 \sf \:  \dfrac{y + 2}{2y +  1 - 3} = \dfrac {1}{1}

 \sf \dfrac {y + 2}{2y - 2} =  \dfrac{1}{1}

 \sf \: 1(y + 2) =1( 2y - 2)

 \sf \:  {y + 2} = 2y-2

 \sf \: 2 + 2 = 2y - y

 \sf \: 4 = y

  \sf \: denominator \:  = 2 \times 4+  1 = 9

 \huge \bf \: fraction \:  =  \frac{4}{9}

Similar questions