Math, asked by Vish6160, 1 year ago

The denominator of a fraction is 2 more than its numerator if the sum of the fraction and its reciprocal is 34 by 15 find the fraction

Answers

Answered by wifilethbridge
210

Answer:

\frac{3}{5} ,  \frac{5}{3}

Step-by-step explanation:

Let x be the numerator .

Since we are given that denominator is 2 more than the numerator .

So, denominator = x+2

So Fraction =  \frac{x}{x+2}

Reciprocal of fraction =  \frac{x+2}{x}

Now we are given that the sum of fraction and its reciprocal is 34/15.

\frac{x}{x+2}+\frac{x+2}{x} =\frac{34}{15}

\frac{(x*x)+[(x+2)*(x+2)]}{(x+2)(x)}=\frac{34}{15}

\frac{2x^{2}+4x+4}{x^{2}+2x}=\frac{34}{15}

15*(2x^{2}+4x+4)=34*(x^{2}+2x)

30x^{2}+60x+60)=34x^{2}+68x

4x^{2}+8x-60=0

x^{2}+2x-15=0

x^{2}+5x-3x-15=0

x(x+5)-3(x+5)=0

(x-3)(x+5)=0

x-3=0, x+5=0

⇒ x = 3 , x= -5

So Fraction when x = 3

\frac{x}{x+2} =\frac{3}{3+2}=\frac{3}{5}

Fraction when x = -5

\frac{x}{x+2} =\frac{-5}{-5+2}=\frac{5}{3}




Answered by Anonymous
106

Answer: \bf\huge\frac{3}{5}

Step-by-step explanation:

Let numerator be p.

Denominator is p + 2.

⇒ Fraction = \bf\huge\frac{p}{p + 2}

\bf\huge\frac{p}{p + 2} + \frac{p + 2}{p} = \frac{34}{15}

⇒ 15(p^2+ p^2 + 4p + 4) = 34(p^2 + 2p)

⇒ 30p^2 + 60p + 60 = 34p^2 + 68p  

⇒ 4p^2 + 8p - 60 = 0

⇒ p^2 + 2p - 15 = 0

⇒ p^2 + 5p - 3p - 15 = 0

⇒ p(p + 5) - 3(p + 5) = 0

⇒ (p + 5)(p - 3) = 0

⇒ p = 3

Therefore

Fraction = \bf\huge\frac{3}{5}

Similar questions