Math, asked by LEGENDPRATTS, 1 month ago

The denominator of a fraction is 4 more than twice its numerator. Denominator
becomes 12 times the numerator, if both the numerator and the denominator de
reduced by 6. Find the fraction.​

Answers

Answered by Anonymous
17

 {\pmb{\underline{\sf{ Required \ Solution ... }}}} \\

Let the Numerator of the fraction be x

Again, Denominator be (2x + 4)

Equation be like  {\sf{ \dfrac{x}{2x+4} }}

Now,

If both the numerator and the denominator reduced by 6 as:  {\sf{ \dfrac{x-6}{2x+4-6} }}

 \\ \circ \ {\pmb{\underline{\sf{ According \ to \ Question: }}}} \\ \\ \\ \colon\implies{\sf{ \dfrac{x-6}{2x+4-6} = \dfrac{1}{12} }} \\ \\ \\ \colon\implies{\sf{ \dfrac{x-6}{2x-2} = \dfrac{1}{12} }} \\ \\ \\ \colon\implies{\sf{ 12(x-6) = 2x-2 }} \\ \\ \\ \colon\implies{\sf{ 12x - 72 = 2x - 2 }} \\ \\ \\ \colon\implies{\sf{ 12x-2x = -2+72 }} \\ \\ \\ \colon\implies{\sf{ 10x = 70 }} \\ \\ \\ \colon\implies{\sf{ x = \cancel{ \dfrac{70}{10} } }} \\ \\ \\ \colon\implies{\sf{ x = 7 }}

Hence...

 \\ {\pmb{\underline{\sf\red{ The \ Fraction \ will \ be \  \dfrac{7}{18} . }}}}

Answered by Anonymous
7

Given :

  • The denominator of a fraction is 4 more than twice its numerator.
  • Denominator
  • becomes 12 times the numerator
  • if both the numerator and the denominator reduced by 6 .

To find :

  • The fraction.

Solution :

\sf Let \\ \sf The  \: fraction  \: will  \: be  \:  \frac{x}{y}

\sf Given  \: y = 2x + 4

\sf 2x - y = -4

\sf We , need \:  to  \: multiply \:  the \:  equation  \\ \sf \: with  \: 6

\sf  \: \;\;\bf{\;\;\red{1st \:  method}}

\sf \sf 12x  - 6y = -24 \\ \sf(y - 6) = 12(x - 6)

\sf  \: \;\;\bf{\;\;\red{2nd \:  method}}

\sf12x−y=66

\sf subscract  \: ( 1 )  \: and  \: ( 2 )

\sf y = 18 , x = 7

\sf Therefore ,  \: the  \: fraction \:  is   \:  \: \frac {7}{18}

Similar questions