Math, asked by arunpatel9683, 2 months ago

the denominator of a fraction is 7 cm more than the numerator if 1 is added to the numerator and 6 is added the denominator the value of the fraction will be ,1/2 in the numerator and denominator​

Answers

Answered by SachinGupta01
10

\bf \underline{ \underline{\maltese\:Given} }

The denominator of a fraction is 7 cm more than the numerator.

If 1 is added to the numerator and 6 is added to the denominator, the value of the fraction becomes 1/2.

\bf \underline{ \underline{\maltese\:To  \: find } }

 \sf \implies Original  \: fraction =  \: ?

\bf \underline{ \underline{\maltese\:Solution  } }

 \sf Let \:  us  \: assume \:  that,

 \sf \implies Numerator \:  of  \: the \:  fraction  \: be \:  x.

 \bf \implies Then,   \sf\: the \:  denominator \:  will  \: be \: x+7.

 \sf According  \: to  \: question,

 \sf  Equation :  \bf \red{ \dfrac{x + 1}{(x + 7) + 6}  =  \dfrac{1}{2} }

 \sf \implies \dfrac{x + 1}{x + 13}  =  \dfrac{1}{2}

 \sf Doing  \: cross \:  multiplication,

 \sf \implies (x + 1) \times 2 = (x + 13) \times 1

 \sf \implies 2x + 1 = x + 13

 \sf \implies 2x + 1  -  x  =  13

 \sf \implies x + 2 =  13

 \sf \implies x =  13  - 2

 \sf \implies x =  11

 \bf \underline{Now},

 \sf \implies Numerator \:  (x) =  \bf 11

 \sf \implies Denominator \:  (x+7) = \bf  (11+7) = 18

 \bf \underline{Therefore},

 \implies \underline{\boxed{  \sf Original  \: fraction =  \dfrac{11}{18} }}

━━━━━━━━━━━━━━━━━━━━━━━━━━

\bf \underline{ \underline{\maltese\:Varification   } }

To verify the answer just write 11 in place of x.

 \sf   \implies \dfrac{x + 1}{(x + 7) + 6}  =  \dfrac{1}{2}

 \sf   \implies \dfrac{11+ 1}{(11+ 7) + 6}  =  \dfrac{1}{2}

 \sf   \implies \dfrac{12}{11+13}  =  \dfrac{1}{2}

 \sf   \implies  \cancel\dfrac{12}{24}  =  \dfrac{1}{2}

 \sf   \implies  \dfrac{1}{2}   =  \dfrac{1}{2}

\bold{\longrightarrow} \:\large{\tt \red{Hence\:Verified\:!}}

Answered by Anonymous
50

Answer:

  • The numerator and the denominator are 11 and 13 respectively

Step-by-step explanation:

Given:

  • The denominator of a fraction is 7 more than the numerator
  • if 1 is added to the numerator and 6 is added the denominator the value of the fraction will be 1/2

To Find:

  • The numerator of the original fraction
  • The denominator of the original fraction

Assumptions:

  • Let the numerator be x
  • Let the denominator be x + 7

Solution:

The original fraction will be,

\rightarrow \tt \qquad \dfrac{x}{x + 7}

According to the question,

\rightarrow \tt \qquad \dfrac{x+ 1}{x+ 7 + 6} = \dfrac{1}{2}

\rightarrow \tt \qquad 2(x+ 1 ) = 1(x + 7 + 6)

\rightarrow \tt \qquad 2(x+1)  = 1(x + 13)

\rightarrow \tt \qquad 2x + 2 = x + 13

\rightarrow \tt \qquad 2x-x = 13 - 2

\rightarrow \tt \qquad {\pink{\boxed{\frak{x = 11}}}\purple\bigstar}

The numerator and the denominator will be,

\nrightarrow \sf \qquad Numerator = x = 11

\nrightarrow \sf \qquad Denominator = x + 7 = 18

Therefore:

  • {\pink{\boxed{\tt{Original \; fraction = \dfrac{11}{13} }}}}
Similar questions