Math, asked by laura2020, 5 months ago

the denominator of a fraction is greater than its numerator by 9.if 7 is subtracted from both,its numerator and denominator, the fraction becomes 2/3.find the original fraction.​

Answers

Answered by nainakathuria6
1

Answer:

Step-by-step explanation:

Let the numerator=x

Then as per the given condition denominator=x+9

Now, if we subtract 7 from numertator then it will be x-7

             and on subtracting 7 from denomiator x+9-7=x+2

Fraction will be (x-7/x+2)=2/3

                          \frac{x-7}{x+2}=\frac{2}{3}

                          3(x-7)=2(x+2)

                          3x-21=2x+4

                           x=25

Answered by Nilesh859
1

Answer:

Let the numerator - x

& the denominator - y

ATQ

 \mathcal{y - x = 9}  --  \orange{(1)} \\  \frac{x -7 }{y - 7}  =  \frac{2}{3}  \\  \implies 3x - 21 = 2y - 14 \\  \implies 3x  - 2y = 7 -  -  \orange{(2)}

Now ...

here we need To find the value of x and y from (1) and (2)

It is now clearly visible that we can apply Substitution Method here to make out the values of x and y

  \therefore \: from \:  \orange{(1)} \: we \: get \\ x =  \pink{y   -   9}  -  -  \orange{(3)} \\ from \:  \orange{(3)} \: and \:  \orange{(2)} \: we \: get \\

3( \pink{y - 9})   - 2y = 7 \\ 3y - 27  - 2y = 7 \\ y =  \blue{34} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ substituting \: this \: value \: in \:  \orange{(3)} \: we \: get \\ x \:  = 34 - 9 \\  \implies \: x =  \red{25}

Therefore the the fraction we came to find is

 \huge{ \frac{x}{y}  =  \frac{25}{34} } \\    \huge\orange{\mathbf{verification}}    \\ it \: can \: be \: verified \: with \: two \: steps \\  \large step \: 1 \:  \\ denominator  - numerator \:  = 9 \\  \implies 34 - 25 = 9 \\  \\  \large{step \: 2}  \\  \frac{numerator - 7}{denominator - 7}  =  \frac{25 - 7}{34 - 7}  =  \frac{18}{27}  \\  =   \pink{\frac{2}{3} } \\ thus \: verified

Follow me for more answers

Similar questions