Math, asked by abdulmujeebpm, 1 year ago

The denominator of a fraction is one more than the twice the numerator if the sum of the fraction and its reciprocal is 2 under 16 by 21 find the fraction ​

Answers

Answered by mathdude500
3

Answer:

 \boxed{\sf \: Fraction =  \dfrac{3}{7} \: } \\  \\

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Let assume that

Numerator of a fraction be x.

So,

Denominator of a fraction be 1 + 2x

Thus,

\sf \: Fraction =  \dfrac{x}{1 + 2x}  \\  \\

According to statement, sum of fraction and its reciprocal is 2\frac{16}{21}  .

So,

\sf \: \dfrac{x}{1 + 2x} +  \dfrac{2x + 1}{x} = 2 \dfrac{16}{21}    \\  \\

\sf \: \dfrac{ {x}^{2}  +  {(2x + 1)}^{2} }{(1 + 2x)x}  =  \dfrac{58}{21}    \\  \\

\sf \: \dfrac{ {x}^{2}  +   {4x}^{2} + 4x + 1}{x + 2 {x}^{2} }  =  \dfrac{58}{21}    \\  \\

\sf \: \dfrac{{5x}^{2} + 4x + 1}{x + 2 {x}^{2} }  =  \dfrac{58}{21}    \\  \\

\sf \: 58( {2x}^{2} + x) = 21( {5x}^{2} + 4x + 1) \\  \\

\sf \:  {116x}^{2} + 58x ={105x}^{2} + 84x + 21\\  \\

\sf \:  {116x}^{2} + 58x - {105x}^{2} -  84x  - 21 = 0\\  \\

\sf \:  {11x}^{2} - 26x  - 21 = 0\\  \\

\sf \:  {11x}^{2} - 33x + 7x  - 21 = 0\\  \\

\sf \: 11x(x - 3) + 7(x - 3) = 0 \\  \\

\sf \: (x - 3)(11x + 7) = 0 \\  \\

\sf \:  \implies \: x = 3 \:  \:  \: or \:  \:  \: x =  -  \frac{7}{11} \:  \{rejected \} \\  \\

Thus,

\sf \: \sf \:  \implies \: Fraction =  \dfrac{x}{1 + 2x}  =  \frac{3}{7}  \\  \\

Hence,

\implies\sf \: \boxed{\sf \: Fraction =  \dfrac{3}{7} \: } \\  \\

Similar questions