Math, asked by pgesicmhb, 1 year ago

The denominator of a fraction is one more than twice it's numerator. If the sum of the fraction and it's reciprocal is 34/15 ,find the fraction.

Answers

Answered by ALTAF11
4
Let the numerator be x
and denominator be y

y = 1 + 2x .....( i )

Fraction :- x / y
reciprocal fraction :- y / x


 \frac{x}{y}  +  \frac{y}{x}  =  \frac{34}{15}

 \frac{ {y}^{2} +  {x}^{2}  }{xy}  =  \frac{34}{15}

 \frac{ {(1 + 2x)}^{2} +  {x}^{2}  }{x(1 + 2x)}  =  \frac{34}{15}

 \frac{1 + 4 {x}^{2}  + 4x +  {x}^{2} }{x + 2 {x}^{2} }  =  \frac{34}{15}

 \frac{5 {x}^{2}  + 4x + 1}{x + 2 {x}^{2} }  =  \frac{34}{15}
75x² + 60x + 15 = 34x + 68x²

75x² - 68x² + 60x - 34x + 15 = 0

7x² + 26x + 15 = 0

7x² + 21x + 5x + 15 = 0

7x ( x + 3 ) + 5 ( x + 3 ) = 0

( 7x + 5 ) ( x + 3 ) = 0


• ( 7x + 5 ) = 0

x = - 5/7 ....... ( neglected )

• ( x + 3 ) = 0

x = - 3

Putting the value of x in i

y = 1 + 2x

y = 1 - 6

y = - 5

the \: required \: fraction =  \frac{x}{y}  =  \frac{ - 3}{ - 5}  =  \frac{3}{5}


Similar questions