Math, asked by amreshjha002, 2 months ago

the denominator of a rational number is gearter than its numerator by 7.if the numerator is increased by 17 and the denominator decreased by 6.the new number becomes 2.find the original number​

Answers

Answered by ShírIey
95

❍ Let's say, the numerator of the fraction be m and denominator of the fraction be n respectively.

Hence,

  • The fraction is: m/n.

ATQ, the denominator 'n' of a rational number is greater than it's numerator 'm' by 7.

Therefore,

⇥ (Denominator = Numerator + 7)

n = (m + 7)⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ —eq.( I )

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\underline{\bigstar\:{\pmb{ \sf{According \;to\; the\; given\; Question :}}}}

  • If the numerator 'm' is increased by 17 and the denominator 'n' is decreased by 6. The new number becomes 2.

\dashrightarrow\sf \bigg\{\dfrac{m + 17}{m + 7 - 6}\bigg\} = 2 \\\\\\\dashrightarrow\sf \bigg\{\dfrac{m + 17}{m + 1}\bigg\} = 2 \\\\\\\dashrightarrow\sf  m + 17 = 2(m + 1)\\\\\\\dashrightarrow\sf m + 17 = 2m + 2\\\\\\\dashrightarrow\sf m - 2m = 2 - 17\\\\\\\dashrightarrow\sf -m = -15\\\\\\\dashrightarrow\underline{\boxed{\pmb{\frak{\pink{m = 15}}}}}\: \bigstar

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

¤ The value of 'm' is 15. Now we'll substitute this value in the eq. ( I ) to find out the denominator of the given fraction 'n' —

\dashrightarrow\sf Denominator = \Big\{Numerator+ 7\Big\} \\\\\\\dashrightarrow\sf n = \Big\{m + 7 \Big\} \\\\\\\dashrightarrow\sf n = 15 + 7\\\\\\\dashrightarrow\underline{\boxed{\pmb{\frak{\purple{n = 22}}}}}\;\bigstar

\therefore{\underline{\sf{Hence,~ the~ required~  original~ number~ is~ \bf{\dfrac{15}{22}}.}}}

Answered by BrainlyRish
78

Given : The denominator of a rational number is greater than its numerator by 7 & the numerator is increased by 17 and the denominator decreased by 6 , the new number becomes 2 .

Exigency To Find : The Original Rational number .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's Consider, the numerator of fraction be p & denominator of the fraction is q .

\qquad \therefore \sf \:Original_{(Rational \;Number \:or \: Fraction \:)}\: is \:: \bf \:\dfrac{\:\: p \:}{\:\:q\:} \\

⠀⠀⠀⠀⠀Given that ,

⠀⠀》 The denominator of a rational number is greater than its numerator by 7 .

\qquad \therefore \sf Denominator \:\:=\: Numerator \: + \: 7 \: \\\\

\qquad :\implies \sf Denominator \:\:=\: Numerator \: + \: 7 \: \\\\

\qquad :\implies \sf q \: \:\:=\: p \: + \: 7 \: \\\\

\qquad :\implies \pmb{ q \: \:\:=\: p \: + \: 7 \:} \qquad  \:\bigg\lgroup \sf{ Eq^n \: 1  }\bigg\rgroup\\\\

\qquad \therefore \sf \:New_{(Rational \;Number \:or \: Fraction \:)}\: is \:: \bf \:\dfrac{\:\: p \:}{\:\:p + 7\:} \\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:According \:to \:the \:Question \::}}\\

⠀⠀━━━━ The numerator is increased by 17 and the denominator decreased by 6 then , the new number becomes 2.

\qquad \dashrightarrow \sf  \dfrac{ Numerator  \: + \: 17 \:}{Denominator  - 6 \;}=\:\: 2 \:\:\\\\

\qquad \dashrightarrow \sf  \dfrac{ p  \: + \: 17 \:}{ p + 7  - 6 \;}=\:\: 2 \:\:\\\\

\qquad \dashrightarrow \sf  \dfrac{ p  \: + \: 17 \:}{ p + 1 \;}=\:\: 2 \:\:\\\\

\qquad \dashrightarrow \sf   p  \: + \: 17 \:=\:\: 2\:( p + 1 ) \:\:\\\\

\qquad \dashrightarrow \sf   p  \: + \: 17 \:=\:\: 2p + 2 \:\:\\\\

\qquad \dashrightarrow \sf   p  \:  \:=\:\: 2p + 2  - 17\:\:\\\\

\qquad \dashrightarrow \sf   p  \:  \:=\:\: 2p - 15\:\:\\\\

\qquad \dashrightarrow \sf   p - 2p \:  \:=\:\: - 15\:\:\\\\

\qquad \dashrightarrow \sf    -p \:  \:=\:\: - 15\:\:\\\\

\qquad \dashrightarrow \sf   p \:  \:=\:\:  15\:\:\\\\

\qquad \therefore \pmb{\underline{\purple{\frak{\:p  = 15 }} }}\:\:\bigstar \\

⠀⠀⠀⠀⠀▪︎⠀⠀⠀Here , p denotes the numerator which is 15 .

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \:  \: Value\:of \: p  \:in \:Eq^n \: 1 \::}}\\

\qquad \dashrightarrow \pmb{ q \: \:\:=\: p \: + \: 7 \:} \qquad  \:\bigg\lgroup \sf{ Eq^n \: 1  }\bigg\rgroup\\\\

\qquad \dashrightarrow \sf q \: \:\:=\: p \: + \: 7 \: \\\\

\qquad \dashrightarrow \sf q \: \:\:=\: 15 \: + \: 7 \: \\\\

\qquad \dashrightarrow \sf q \: \:\:=\: 22 \: + \: 7 \: \\\\

\qquad \therefore \pmb{\underline{\purple{\frak{\:q  = 22 }} }}\:\:\bigstar \\

  • Here q denotes the denominator which is 22 .

⠀⠀⠀⠀⠀Now , Finding Original Fraction :

\qquad \dashrightarrow \sf \:Original_{(Rational \;Number \:or \: Fraction \:)}\:  \:= \bf \:\dfrac{\:\: p \:}{\:\:q\:} \\

\qquad \dashrightarrow \sf \:Original_{(Rational \;Number \:or \: Fraction \:)}\:  \:= \bf \:\dfrac{\:\: 15 \:}{\:\:22\:} \\

\qquad \therefore \pmb{\underline{\purple{\frak{\:  \:Original_{(Rational \;Number \:or \: Fraction \:)}\:  \:=  \:\dfrac{\:\: 15 \:}{\:\:22\:}}} }}\:\:\bigstar \\

\qquad \therefore \underline { \sf Hence,  \: The \: Original \:number \: is \: \bf 15/22 \:.}\\

Similar questions