Math, asked by Piyush1278, 2 months ago

the denominator of a rational number is gearter than its numerator by 7.if the numerator is increased by 17 and the denominator decreased by 6.the new number becomes 2.find the original number​

Answers

Answered by CuteAnswerer
20

GIVEN :

  • The denominator of a rational number is 7 more than its numerator.

  • The new number becomes 2, if the numerator is increased by 17 and the denominator is decreased by 6.

TO FIND :

  • Original Number.

SOLUTION :

Let the numerator be x.

Then , denominator = x+7

  • After increasing the numerator by 17 and decreasing the denominator by 6, the new number becomes 2.

:  \implies{\sf{ \dfrac{Numerator  + 17}{Denominator - 6}  = 2 }} \\  \\

:  \implies{\sf{ \dfrac{x + 17}{(x + 7) - 6}  = 2 }} \\  \\

: \implies{\sf{ \dfrac{x + 17}{x + 7 - 6}  = 2 }} \\  \\

: \implies{\sf{ \dfrac{x + 17}{x + 1}  = 2 }} \\  \\

  • By cross Multiplication:

: \implies{\sf{x + 17 = 2(x + 1) }} \\  \\

: \implies{\sf{x + 17 = 2x + 2 }} \\  \\

  • Transposing 2 to LHS and x to RHS:

: \implies{\sf{17 - 2= 2x  - x }} \\  \\

\implies{\sf{15= x  }} \\  \\

\implies{ \underline{ \huge{ \boxed{\red{ \bf{x= 15  }}}}}}

Numerator :

  • \bf{x = 15}

Denominator :

  • Substituting the value of x :

:\leadsto {\sf{x+7}}\\ \\

 :\leadsto{\sf{15+7}}\\ \\

:\leadsto\ {\bf{22}}

\huge {\pink{\therefore}} The Original Number is \bf{\dfrac{15}{22}}.


Ekaro: Nice! :)
Ataraxia: Good!
mddilshad11ab: Perfect¶
Answered by BrainlyShinestar
19

Given : The denominator of a rational number is greater than its numerator by 7 & 17 and the denominator decreased by 6, the new becomes 2.

To Find : The Original Rational number ?

________________________

❍ Let's consider the numerator of fraction be p & denominator of the fraction is q.

  • \boxed{\sf\pink{\therefore~Original_{(Rational ~Number ~or ~Fraction)}~=~\dfrac{p}{q}}}

~

Given that,

  • The denominator of a rational number is greater than its numerator by7.

\therefore{\sf{Denominator~=~Numerator~+~7}}

~~~~~~~~~~{\sf:\implies{Denominator~ =~ Numerator~+~7}}

~~~~~~~~~~{\sf:\implies{q~=~p~+~7}}

~~~~~~~~~~{\sf:\implies{q~=~p~+~7~~~~~~~~~~~~~~~~~~~~\bigg\lgroup{Eqⁿ~1}\bigg\rgroup}}

~~~~~~~~~~{\sf\purple\therefore{New_{(Rational ~Number ~or ~Fraction)}~=~\dfrac{p}{p~+~7}}}

~

\underline{\frak{According~ to ~the~ Given ~Question~:}}

~

  • The numerator is increased by 17 & the denominator decreased by 6 then, the new number becomes 2.

~

~~~~~~~~~~{\sf:\implies{\dfrac{Numerator~+~17}{Denominator~-~6}~=~2}}

~~~~~~~~~~{\sf:\implies{\dfrac{p~+~17}{p~+~7~-~6}~=~2}}

~~~~~~~~~~{\sf:\implies{\dfrac{p~+~17}{p~+~1}~=~2}}

~~~~~~~~~~{\sf:\implies{p~+~17~=~2(p~+~1)}}

~~~~~~~~~~{\sf:\implies{p~+~17~=~2p~+~2}}

~~~~~~~~~~{\sf:\implies{p~=~2p~+~2~-~17}}

~~~~~~~~~~{\sf:\implies{p~=~2p~-~15}}

~~~~~~~~~~{\sf:\implies{p~-~2p~=~- 15}}

~~~~~~~~~~{\sf:\implies{- p~=~- 15}}

~~~~~~~~~~{\sf:\implies{\cancel{-}p~=~\cancel{-}15}}

~~~~~~~~~~{\sf:\implies{p~=~15}}

~~~~~~~~~~:\implies{\underline{\boxed{\frak{\pink{\therefore~p~=~15}}}}}

~

Here,

  • p denotes the numerator which is 15.

~

\underline{\bf{Now~By~Substituting ~the ~values ~of~pin~Eqⁿ~ 1 :}}

~~~~~~~~~~{\sf:\implies{q~=~p~+~7~~~~~~~~~~~~~~~~~~~~\bigg\lgroup{Eqⁿ~1}\bigg\rgroup}}

~~~~~~~~~~{\sf:\implies{q~=~p~+~7}}

~~~~~~~~~~{\sf:\implies{q~=~15~+~7}}

~~~~~~~~~~{\sf:\implies{q~=~22~+~7}}

~~~~~~~~~~:\implies{\underline{\boxed{\frak{\purple{\therefore~q~=~22}}}}}

~

Here,

  • q denotes the denominator which is 22.

~

Now,

  • Finding Original Fraction :

~~~~~~~~~~{\sf:\implies{Original_{(Rational ~Number ~or ~Fraction)}~=~\dfrac{p}{q}}}

~~~~~~~~~~{\sf:\implies{Original_{(Rational ~Number~ or~ Fraction)}~=~\dfrac{15}{22}}}

  • \underset{\blue{\rm Required\ Answer}}{\underbrace{\boxed{\frak{\pink{Original_{(Rational ~Number ~or~ Fraction)}~=~\dfrac{15}{22}}}}}}

~

\therefore\underline{\sf{The ~Original ~Number ~is~\bf{\dfrac{15}{22}}}}

Similar questions