Math, asked by furiousplayz8, 11 months ago

The denominator of a rational number is greater than its numerator by 8. If the numerator is increased by
17 and the denominator is decreased by 1, the number obtained is 3/2. Find the rational number.

Answers

Answered by Anonymous
59

\Large{\underline{\underline{\mathfrak{\bf{\orange{Question}}}}}}

The denominator of a rational number is greater than its numerator by 8. If the numerator is increased by 17 and the denominator is decreased by 1, the number obtained is 3/2. Find the rational number.

\Large{\underline{\underline{\mathfrak{\bf{\pink{Solution}}}}}}

\Large{\underline{\mathfrak{\bf{\blue{Given}}}}}

  • The denominator of a rational number is greater than its numerator by 8
  • If the numerator is increased by 17 and the denominator is decreased by 1, the number obtained is 3/2

\Large{\underline{\mathfrak{\bf{\blue{Find}}}}}

  • Rational number

\Large{\underline{\underline{\mathfrak{\bf{\red{Explanation}}}}}}

Let,

  • Numerator = x
  • Denominator = y

So , A/C to question,

( The denominator of a rational number is greater than its numerator by 8 )

:\mapsto\sf{\:y\:=\:x+8} \\ \\ :\mapsto\sf{\pink{\:x\:-\:y\:=\:-8.......(1)}}

Again,

( If the numerator is increased by 17 and the denominator is decreased by 1, the number obtained is 3/2 )

:\mapsto\sf{\:\dfrac{x+17}{y-1}\:=\:\dfrac{3}{2}} \\ \\ :\mapsto\sf{\:2.(x+17)\:=\:3.(y-1)} \\ \\ :\mapsto\sf{\pink{\:2x-3y\:=\:-37......(2)}}

multiply by 2 in equ(1),

  • 2x - 2y = -16
  • 2x - 3y = -37

___________Sub. it's

:\mapsto\sf{\:(-2y+3y)\:=\:(-16+37)} \\ \\ :\mapsto\sf{\orange{\:y\:=\:21}}

keep value of y in equ(2),

:\mapsto\sf{\:2x-3\times21\:=\:-37} \\ \\ :\mapsto\sf{\:2x\:=\:-37+63} \\ \\ :\mapsto\sf{\:x\:=\:\cancel{\dfrac{26}{2}}} \\ \\ :\mapsto\sf{\pink{\:x\:=\:13}}

\large{\underline{\mathfrak{\bf{\blue{Thus}}}}}

:\mapsto\sf{\green{\:Value\:of\:x\:=\:13}} \\ \\ :\mapsto\sf{\green{\:Value \:of\:y\:=\:21}}

\large{\underline{\mathfrak{\bf{\blue{Hence}}}}}

:\mapsto\small\sf{\blue{\:Required\:rational\:number\:will\:be\:=\:\dfrac{13}{21}}}

Answered by mddilshad11ab
60

\huge{\underline{\purple{\rm{Solution:}}}}

\small{\underline{\red{\rm{Let:}}}}

\sf{The\:Numerator\:of\:fraction=N}

\sf{The\:Denominator\:of\:fraction=D}

\orange{To\: Find}

  • \bold\green{The\: rational\: Number}

\sf{The\:denominator\:of\:a\:rational\: Number}

\sf{is\: greater\:than\:its\: Numerator\:by 8}

  • \bold\green{As\:per\:the\: Question}

\sf{\dashrightarrow D=N+8}

  • \bold\red{D=N+8-----(1)}

\sf{If\:the\:numerator\:is\:increased\:by\:17\:and\:the\:denominator}

\sf{is\:less\:by\:1\:the\:Number\:obtained\:3\:by\:2}

\sf{\dashrightarrow \frac{N+17}{D-1}=\frac{3}{2}}

\sf{\dashrightarrow 2(N+17)=3(D-1)}

\sf{\dashrightarrow 2N+34=3D-3}

\sf{\dashrightarrow 2N-3D=-3-34}

\sf{\dashrightarrow 2N-3D=-37}

  • \bold\red{2N-3D=-37----(2)}

\sf{putting\: the\: value\: of\:D=N+8\:in\:eq\:2}

\sf{\dashrightarrow 2N-3(N+8)=-37}

\sf{\dashrightarrow 2N-3N-24=-37}

\sf{\dashrightarrow -N=-37+24}

\sf{\dashrightarrow -N=-13}

\sf{\dashrightarrow N=13}

\sf{putting\: the\: value\: of\:N=13\:in\:eq\:1}

\sf{\dashrightarrow D=N+8}

\sf{\dashrightarrow D=13+8}

\sf{\dashrightarrow D=21}

\bold\green{Hence,}

\small{\boxed{\purple{\rm{The\: rational\: number=\frac{N}{D}=\frac{13}{21}:}}}}

Similar questions