Math, asked by Balajinaik739, 10 months ago

The denominator of a rational number is greater than its Numerator by 3.If 3 is subtracted from the numerator and 2 is added to its denominator.The new number becomes 1 5 .Find the original Rational numbers.

Answers

Answered by TheVenomGirl
3

\star{ \underline{ \underline{ \frak{ \Large{ \purple{Correct \: Question: - }}}}}}

  • The denominator of a rational number is greater than its numerator by 3 if 3 is subtracted from the numerator and 2 is added to its denominator the new number becomes 1 / 5 find the original number.

\star{ \underline{ \underline{ \frak{ \Large{ \pink{Answer: - }}}}}}

 \sf \: Let, the  \: numerator  \: of  \: rational \: number \: x

Then,

 \sf \: Denominator = x + 3

_____________________________________________

 \star{ \sf{ \underline{According  \: to  \: the \:  question,}}}

 :\implies \sf \: \: \:   \frac{x - 3}{x + 3 + 2} =  \frac{1}{5} \\  \\  \\   :\implies \sf \: \: \:  \frac{x - 3}{x + 5} =  \frac{1}{5} \\  \\  \\  :\implies  \sf\: \: \:5x - 15 = x + 5 \\  \\  \\  :\implies  \sf\: \: \:  5x - x = 5 + 15 \\  \\  \\  :\implies \sf \: \: \:  4x = 20 \\  \\  \\  :\implies \sf \: \: \:  x =   \cancel\frac{20}{4} \\  \\  \\  :\implies \sf \: \: \:  { \sf{ \red{ \boxed{x = 5}}}}

_____________________________________________

 \sf \: The  \: original  \: rational  \: fraction \:  is :  -  \\  \\   \sf\longmapsto \frac{5}{5 + 3}  \\  \\ \sf \longmapsto { \blue{ \boxed{\frac{5}{8} }}}

_____________________________________________

Answered by InfiniteSoul
1

\sf{\huge{\bold{\pink{\bigstar{\boxed{\boxed{Question}}}}}}}

  • The denominator of a rational number is greater than its numerator by 3 if 3 is subtracted from the numerator and 2 is added to its denominator the new number becomes 1 / 5 find the original number.

\sf{\huge{\bold{\pink{\bigstar{\boxed{\boxed{Solution}}}}}}}

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • numerator = x
  • denominator = x + 3

\sf{\bold{\blue{\underline{\underline{To\:Find}}}}}

  • The original fraction

\sf{\bold{\purple{\underline{\underline{Solution}}}}}

\sf\dfrac{x - 3}{x + 3 + 2} = \dfrac{1}{5}

\sf\dfrac{x-3}{x+5} = \dfrac{1}{5}

  • cross multiplication

\sf 5 {x - 3} = x + 5

\sf 5x - 15 = x + 5

\sf 5x - x = 15 + 5

\sf 4x = 20

\sf x = \dfrac {\cancel{20}}{\cancel{4}}

\sf  x = 5

  • required fraction

\dfrac{x}{x + 3} = \dfrac{5}{5+3}

\dfrac{5}{8}

\sf{\bold{\red{\boxed{\dag \dfrac{5}{8}}}}}

______________❤

Similar questions