Math, asked by mukesh4016, 7 months ago

the denominator of a rational number is greater than its numerator by 4 if numerator is increased by 11 and the denominator is decreased by 1 the new number becomes 7 by 3 find the original number​

Answers

Answered by Anonymous
0

Answer:

let \: the \: original \: faction \: be \:  \frac{x}{y}  \\  \\ as \: per \: the \: question \\  \\  =  > x + 4 = y \\  =  > x - y =  - 4................(1) \\\\and\\  \\  =  >  \frac{x + 11}{y - 1}  =  \frac{7}{3}  \\  \\  =  > 3x + 33 = 7y - 7 \\  \\ =   > 3x - 7y =  - 40............(2) \\  \\ solving \: (1 ) \: and \: (2) \\  \\ 3x - 3y =  - 12 \\ 3x - 7y =  - 40 \\ ......................... \\  =  > 4y = 28 \\  =  > y = 7 \\  \\ from \: eq  \:(1) \\  =  > x =  - 4 + y \\  =  > x =  - 4 + 7 \\  =  > x = 3 \\  \\ therefore \: he \: required \: fraction \: is \:  \frac{3}{7}

Answered by llTheUnkownStarll
17

Given:

  • The denominator of a rational number is greater than it's numerator by 4. If the numerator is increased by 11 and the Denominator is decreased by 1, the new number becomes ⁷⁄₃.

To find:

  •  The Original number

Solution:⠀⠀

Let's say, that the numerator of the fraction be x. Then, denominator of the fraction be (x + 4) respectively.

\begin{gathered}\sf  \orange\bigstar \:  \boxed{\sf{According \;to\;the\; Question\; :}}\end{gathered}

If the numerator is increased by 11 and the Denominator is decreased by 1, the new number becomes ⁷⁄₃.

⠀⠀

\begin{gathered} : \implies\sf\Bigg\{\dfrac{x + 11}{x + 4 - 1}\Bigg\} = \Bigg\{\dfrac{7}{3}\Bigg\}\\\\ : \implies\sf\Bigg\{\dfrac{x + 11}{x + 3}\Bigg\} = \Bigg\{\dfrac{7}{3}\Bigg\}\\\\ : \implies\sf 3\Big\{x + 11\Big\}=7\Big\{x + 3\Big\}\\\\ : \implies\sf 3x + 33 = 7x + 21 \\\\ : \implies\sf 3x - 7x = 21 - 33\\\\ : \implies\sf -4x = -12\\\\\twoheadrightarrow\sf x = \cancel\dfrac{-12}{-4}\\\\ : \implies\underline{\boxed{{\frak{x = 3}}}}\; \pink\bigstar\end{gathered}

Therefore,

  • Numerator of the fraction, x = 3
  • Denominator of the fraction, (x + 4) = (3 + 4) = 7 

\boxed{\sf{Hence,\: the \;original\; number\; is\;\bf{\dfrac{3}{7}}}}.

Thank you!!!

@itzshivani

Similar questions