Math, asked by asvdvadbda, 2 months ago

the denominator of a rational number is greater than its numerator by 4. if 3 subtracted from the numerator and 4 added to the denominator, the new number becomes 2/13. find the original number

pls tell me the ans of this :(

Answers

Answered by King412
77

 \\    \underline\red{\rm \large{Answer :-  }}

  \\ \sf \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \implies \:  \dfrac{25}{29}  \\

 \\    \underline\red{\rm \large{Solution :- }}

Let the numerator be x .

So, the denominator of rational number is greater than its numerator by 4.

Then denominator be (4+x)

Now, According to the question

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \implies \:  \dfrac{(x - 3)}{(4 + x) + 4} =  \dfrac{2}{3}  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \implies \:  \dfrac{(x - 3)}{(8+ x) } =  \dfrac{2}{3}  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \implies \:3  {(x - 3)} = 2{(8+ x)}\\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \implies \:3x - 9= 16+ 2x \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \implies \:3x - 2x= 16+ 9 \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \implies  \: x= 16+ 9 \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \implies  \boxed{   \pink{\frak{\: x= 25}}} \\

Now , We know that

 \\  \sf \:  \:  \:  \:  \: Numerator \:  = x  \: = 25  \\

 \\  \sf \:  \:  \:  \:  \: Denominator = 4 + x  \\  \:  \sf \: \:  \:  \: \: \:\:  \:  \:  \:   \:  \:  \:  \:\:   \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 4 + 25 \\ \:  \sf \:  \:  \: \: \:\:  \:  \:  \:   \:  \:  \:  \:\:  \:  \: \:  \:  \:  \:  \:  \:   \: \:   \:  =  \underline\pink{29} \\

 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \green{  \sf \:  \:  \: So,  \: The \:  fraction \:  is \:  \:   \dfrac{25}{29} .}

Answered by Anonymous
12

________________________

GiveN :-

  \:  \:

 \:  \:

  • The denominator of a rational number is greater than its numerator by 4. If 3 subtracted from the numerator and 4 added to the denominator, the new number becomes 2/13

 \:  \:

 \:  \:

To FinD :-

 \:  \:

 \:  \:

  • The original number.

 \:  \:

 \:  \:

SolutioN :-

 \:  \:

Let the numerator be x and denominator be 4+x

 \:  \:

 \:  \:

 \qquad \quad  :  \implies  \sf\dfrac{(x - 3)}{(4 + x) + 4}  =  \dfrac{2}{13}

 \:  \:

 \qquad  \qquad :  \implies \sf{ \dfrac{(x - 3)}{(8 + x)} =  \dfrac{2}{13}  }

 \:  \:

 \quad \quad :  \implies \sf{13(x - 3) = 2(8 + x)}

 \:  \:

 \qquad \quad  :  \implies \sf{13x - 39 = 16 + 2x}

 \:  \:

 \qquad \quad :  \implies \sf{13x - 2x = 16 + 39}

 \:  \:

 \quad \qquad :  \implies \sf{11x = 55}

 \:  \:

 \qquad \qquad  :  \implies \sf{x =  \dfrac{ 55}{11} }

 \:  \:

 \qquad \qquad  :  \implies \sf{x = 5}

 \:  \:

______________________________

 \:  \:

We also know that :-

 \:  \:

 \qquad \quad \begin{gathered}{ \boxed{ \underline{ \bf{ \red{Numerator = x = 5}}}}} \end{gathered}

 \:  \:

 \qquad \qquad \begin {gathered}{  \boxed{ \underline{ \bf{ \red{Denominator = 4 + x = 4 + 5 = 9}}}}} \end{gathered}

 \:  \:

________________________________

 \:  \:

 \begin{gathered}{ \boxed{ \underbrace{ \sf{ \blue{Therefore,  \: the \:  fraction \:  is  \:  \frac{5}{9} }}}}} \end{gathered}

 \:  \:

 \:  \:

_________________________

Similar questions