Math, asked by ramendrak051, 2 days ago

The denominator of a rational number is greater than its numerator by 3. If the numerator is increased by 7 and the denominator is decreased by 1, then the new number becomes
3
2
. Find the original number.

Answers

Answered by manojchauhanma2
1

Answer:

Solution

Transcript

Solution:

Let the numerator of a rational number be x then the denominator is x+8.

Therefore, Rational number = \frac{x}{x+8}

x+8

x

According to the question,

\frac{x+17}{x+8-1}=\frac{3}{2}

x+8−1

x+17

=

2

3

\Rightarrow\ \frac{x+17}{x+7}=\frac{3}{2}⇒

x+7

x+17

=

2

3

\Rightarrow\ 2\left(x+17\right)=3\left(x+7\right)⇒ 2(x+17)=3(x+7)

\Rightarrow\ 2x+34=3x+21⇒ 2x+34=3x+21

\Rightarrow\ 2x-3x=21-34⇒ 2x−3x=21−34

\Rightarrow\ -x=-13⇒ −x=−13

\Rightarrow\ x=13⇒ x=13

Hence, the required rational number

=\ \frac{x}{x+8}=\frac{13}{13+8}=\frac{13}{21}=

x+8

x

=

13+8

13

=

21

13

Answered by ramg777
0

Answer:

According to the question,

Original number = x/(x + 3)

New number = (x + 7)/(x + 3 - 1)

                    ⇒ (x + 7)/(x + 2) = 3/2.

                    ⇒ 2(x + 7) = 3(x + 2)

                    ⇒ 2x + 14 = 3x + 6

                    ⇒ 3x - 2x = 14 - 6

                    ⇒ x = 8.

Original number = x/(x + 3)

                         = 8/(8 + 3)

                         = 8/11.

Hope this helps you.

Mark me as the brainliest.

Similar questions