Math, asked by failer, 1 year ago

The denominator of a rational number is greater than its numerator by 7. If 3
is subtracted from the numerator and 2 is added to its denominator, the new
number becomes 1/5. Find the rational number.

Answers

Answered by siddhartharao77
16

Let the denominator be x.

Then the numerator will be x + 7.

∴ Original fraction = (x/x + 7)


According to the given condition,

⇒ (x - 3)/(x + 9) = 1/5

⇒ 5(x - 3) = x + 9

⇒ 5x - 15 = x + 9

⇒ 5x - x = 9 + 15

⇒ 4x = 24

⇒ x = 6.


Therefore, rational number = (6/13).


Hope it helps!


mittuc: 6/13
Answered by Anonymous
1

\sf\small\underline\purple{Let:-}

\sf{\implies Numerator\:_{(fraction)}=N}

\sf{\implies Denominator\:_{(fraction)}=D}

\sf{\implies Rational\: number=\dfrac{N}{D}}

\sf\small\underline\purple{Given:-}

\sf{\implies Denominator=Numerator+7}

\sf\small\underline\purple{To\: Find:-}

\sf{\implies The\:ratio\: number=?}

\sf\small\underline\purple{Solution:-}

\bf\small\underline{Calculation\:for\:1st\: equation:-}

\sf{\implies Rational\: number\:_{(denominator)}=Rational\: number\:_{(numerator)}+7}

\tt{\implies D=N+7----(i)}

\bf\small\underline{Calculation\:for\:2nd\: equation:-}

\sf{\implies \dfrac{Numerator-3}{Denominator+2}=Rational\: number\:_{(become\:1/5)}}

\tt{\implies \dfrac{N-3}{D+2}=\dfrac{1}{5}}

\tt{\implies 5N-15=D+2}

\tt{\implies 5N-D=2+15}

\tt{\implies 5N-D=17-----(ii)}

In eq (ii) putting the value of D=N+7:-]

\tt{\implies 5N-(N+7)=17}

\tt{\implies 5N-N-7=17}

\tt{\implies 5N-N=17+7}

\tt{\implies 4N=17+7}

\tt{\implies 4N=24}

\tt{\implies N=\frac{24}{4}=6}

Putting the value of N=6 in eq (i):-]

\tt{\implies D=N+7}

\tt{\implies D=6+7}

\tt{\implies D=13}

\sf\large{Hence,}

\sf{\implies Rational\: number=\frac{N}{D}}

\bf{\implies Rational\: number=\frac{6}{13}}

Similar questions