English, asked by Anonymous, 6 months ago

the denominator of a rational number is less than its ne numerator than 5 if the five is added to the numerator the new number become 11 by 6 find the original number​

Answers

Answered by ItzCaptonMack
8

\huge\mathtt{\fbox{\red{Answer✍︎}}}

\large\underline\red{GIVEN,}

\sf\dashrightarrow \blue{THE\:GIVEN\:FRACTION\:IS\:A\:RATIONAL\:NUMBER.}

\sf\dashrightarrow {\blue{\mathbb{\text{ denominator is less than its numerator by 5.}}}}

\sf\therefore \blue{let\:the\:numerator\:be\:x}

\sf\dashrightarrow \blue{denominator= x-5}

\sf\dashrightarrow \blue{\dfrac{x}{x-5}}

\sf\dashrightarrow \bold\pink{if \:5 \:is \:added\: to \:the \:numerator, \:numerator \:becomes\: ; \dfrac{11}{6}}

\sf\dashrightarrow \red{numerator= x+5}

THE EQUATION FORM IS,

\rm{\boxed{\sf{\green{ \circ\:\: \dfrac{x+5}{x-5} = \dfrac{11}{6}\:\: \circ}}}}

\large\underline\purple{TO\:FIND,}

\sf\dashrightarrow \red{\:THE\:ORIGINAL\:RATIONAL\:NUMBER}

\sf\implies \green{\dfrac{x  + 5}{x - 5}  =  \dfrac{11}{6}}

\sf\implies \green{6 \times (x+5)= 11 \times (x-5)}

\sf\implies \green{6x+30= 11x-55}

\sf\implies \green{30+55=11x-6x}

\sf\implies \green{85= 5x}

\sf\implies \green{x= \dfrac{85}{5}}

\sf\implies \green{x= \cancel  \dfrac{85}{5}}

 \sf\implies  \orange{x = 17}

\rm{\boxed{\sf{ \circ\:\: x= 17 \:\: \circ}}}

THE ORIGINAL NUMBERS ARE,

\sf\implies \red{numerator=x =17}

\sf\implies \red{d enominator= x-5}

\sf\implies \red{denominator=17-5}

\sf\implies \pink{denominator=12}

\large\underline\orange{FRACTION,}

\sf\dashrightarrow \purple{\dfrac{x}{x-5}= \dfrac{17}{12}}

\sf\dashrightarrow \purple{\dfrac{NUMERATOR}{DENOMINATOR}= \dfrac{17}{12}}

\rm\underline\blue{NUMERATOR\:IS\:17\:AND\: DENOMINATOR\:IS\:12}

\rm{\boxed{\sf{ \circ\:\: \dfrac{NUMERATOR}{DENOMINATOR}= \dfrac{17}{12} \:\: \circ}}}

Answered by BrainlyAryabhatta
2

Answer:

Explanation:

Let the numerator of the rational number be x. Then, the denominator of the rational number =x+3\left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right]  \lim_{n \to \infty} a_n[tex]According to the given condition,New numerator =3x and new denominator =(x+3)+20=x+23Given, x+233x​ = 81​ By cross multiplying, we get8(3x)=x+23⇒24x=x+23⇒23x=23 ...

Therefore, numerator of the rational number =1 and denominator =1+3=4.

Hence, the original rational number is

4

1

Therefore, numerator of the rational number =1 and denominator =1+3=4.

Hence, the original rational number is

4

Therefore, numerator of the rational number =1 and denominator =1+3=4.

Hence, the original rational number is 4

Hope it's help you

Similar questions