English, asked by Anonymous, 6 months ago

the denominator of a rational number is less than its ne numerator than 5 if the five is added to the numerator the new number become 11 by 6 find the original number ​

Answers

Answered by ItzCaptonMack
42

\huge\mathtt{\fbox{\red{Answer✍︎}}}

\large\underline\red{GIVEN,}

\sf\dashrightarrow \blue{THE\:GIVEN\:FRACTION\:IS\:A\:RATIONAL\:NUMBER.}

\sf\dashrightarrow {\blue{\mathbb{\text{ denominator is less than its numerator by 5.}}}}

\sf\therefore \blue{let\:the\:numerator\:be\:x}

\sf\dashrightarrow \blue{denominator= x-5}

\sf\dashrightarrow \blue{\dfrac{x}{x-5}}

\sf\dashrightarrow \bold\pink{if \:5 \:is \:added\: to \:the \:numerator, \:numerator \:becomes\: ; \dfrac{11}{6}}

\sf\dashrightarrow \red{numerator= x+5}

THE EQUATION FORM IS,

\rm{\boxed{\sf{\green{ \circ\:\: \dfrac{x+5}{x-5} = \dfrac{11}{6}\:\: \circ}}}}

\large\underline\purple{TO\:FIND,}

\sf\dashrightarrow \red{\:THE\:ORIGINAL\:RATIONAL\:NUMBER}

\sf\implies \green{\dfrac{x  + 5}{x - 5}  =  \dfrac{11}{6}}

\sf\implies \green{6 \times (x+5)= 11 \times (x-5)}

\sf\implies \green{6x+30= 11x-55}

\sf\implies \green{30+55=11x-6x}

\sf\implies \green{85= 5x}

\sf\implies \green{x= \dfrac{85}{5}}

\sf\implies \green{x= \cancel  \dfrac{85}{5}}

 \sf\implies  \orange{x = 17}

\rm{\boxed{\sf{ \circ\:\: x= 17 \:\: \circ}}}

THE ORIGINAL NUMBERS ARE,

\sf\implies \red{numerator=x =17}

\sf\implies \red{d enominator= x-5}

\sf\implies \red{denominator=17-5}

\sf\implies \pink{denominator=12}

\large\underline\orange{FRACTION,}

\sf\dashrightarrow \purple{\dfrac{x}{x-5}= \dfrac{17}{12}}

\sf\dashrightarrow \purple{\dfrac{NUMERATOR}{DENOMINATOR}= \dfrac{17}{12}}

\rm\underline\blue{NUMERATOR\:IS\:17\:AND\: DENOMINATOR\:IS\:12}

\rm{\boxed{\sf{ \circ\:\: \dfrac{NUMERATOR}{DENOMINATOR}= \dfrac{17}{12} \:\: \circ}}}

Answered by YourHeartbeat
109

\huge{\underline{\sf{\green{Question}}}}

The denominator of a rational number is less than its numerator than 5 if the five is added to the numerator the new number become 11 by 6 find the original number.

➠Let the numerator be x.

\huge{\red{\sf{Given}}}

\longrightarrow\sf{The\: Denominator=x-5}

★If 5 is added to the numerator it becomes {\sf{\frac{11}{5}}}

Hence,

\red{\tt{The~fraction~:-}}

\longrightarrow{\green{\boxed{\boxed{\sf{\frac{x+5}{x-5}=\frac{11}{5}}}}}}

\huge{\underline{\sf{\green{To\:Find}}}}

➠The original number = ?

\huge{\underline{\sf{\green{Solution}}}}

\longrightarrow\huge{\green{\sf{\frac{x+5}{x-5}=\frac{11}{5}}}}

\longrightarrow{\green{\sf{6(x+5)=11(x-5)}}}

\bf{\red{(Using~cross~multiplication)}}

\longrightarrow{\green{\sf{6x+30=11x-55}}}

\longrightarrow{\green{\sf{6x+30=11x-55}}}

\longrightarrow{\green{\sf{11x-6x=55+30}}}

\longrightarrow{\green{\sf{5x=85}}}

\longrightarrow{\green{\sf{x=\frac{85}{5}}}}

\longrightarrow{\green{\sf{x=17}}}

{\purple{\sf{The~original~numbers~are :-}}}

Numerator\sf{~=x=17}

Denominator\sf{~=(x-5)=(17-5)= 12}

{\bold{\sf{So~Done!!}}}

Similar questions