Math, asked by renrenn, 5 hours ago

The denominator of fraction is 3 more than the numerator. When it is added to its reciprocal, the result is 31/40. What is the fraction?

Answers

Answered by sonalidugad
0

51.6

  1. fraction
  • hhxhxhxnxxhxhhsjsjshxbxgsjiwjsnxhxusisidxkxj
Answered by Anonymous
3

{\huge{\red{Ãñs}wêr}} \\ </p><p>[tex]let \: the \: denominator \: fraction \: is =  \frac{x}{y}  \\ then \: according \: to \: given \: question . \\ y = x + 3 \: equation(1) \\ again =  \frac{x}{y}  +  \frac{y}{x}  =  \frac{31}{40} \\  \frac{ {x}^{2} +  {y}^{2}  }{xy}  =  \frac{31}{40}

 {40x}^{2} +  {40y}^{2} = 31xy \: equation(1) \\ put \: the \: value \: of \: y \: in \: equation \: (2) . \\  {40x}^{2} + 40(x + 3)^{2} = 31x(x + 3) \\  {40x}^{2}   + 40( {x}^{2} + 9 + 6x) =  {31x}^{2} +  93x \\   40x^{2} + 40 {x}^{2} + 360 + 240x = 31 {x}^{2} + 93x \\ 80 {x}^{2} - 31 {x}^{2} + 240x  - 93x  + 360 = 0 \\ 49 {x }^{2} + 147x + 360 = 0 \\ 7(7 {x}^{2} + 21x + 51 ) = 0 \\ (7 {x}^{2}  + 21x + 51) = 0 \\ (x   +  17)(x   -   3) by \: factorise \\ (x + 17) = 0 \: ( x - 3) = 0 \\  x =  - 17 \: x = 3 \\ put \: x = 3 \: in \: equation \: (1) \\ y = 3 + 3 = 6 \\ fraction =  \frac{x}{y} =  \frac{6}{5}      </p><p>

Similar questions