the density of a solid ball is determined in an experiment the diameter of ball is measured with a screw gauge whose pitch is 0.5 mm and there are 50 divisions on the circular scale. the reading on the main scale is 2.5 mm and that on the circular scale is 20 divisions if the measured mass of the ball has a relative error of 2% the relative percentage error in density is
Answers
Answered by
13
Heya mate.....
3.1%
@skb
3.1%
@skb
siyajrangal:
plz tell me the solution
Answered by
65
Given
Screw gauge readings
Pitch =0.5mm
Circular scale division=50
Main scale reading =2.5 mm
Circular scale division reading =20 divisions
Relative error =2%
So
Then dimensions reading from screw gauge= Dia of ball
S.G. Reading = main scale reading +[(pitch/circular scale division) x circular scale division reading]
=2.5+[(0.5/50)x20)]
=2.5=0.2
=2.7mm
Density = mass/ volume
Volume =4/3 pi r³
=10.3065mm³
Density (§ using this symbol for rho)
Mass=m
Volume =v
§= m/v
% error in density = dm/m x100 + (dD/D) 3 x 100
=3.1%
This is ur ans hope it will help you
Screw gauge readings
Pitch =0.5mm
Circular scale division=50
Main scale reading =2.5 mm
Circular scale division reading =20 divisions
Relative error =2%
So
Then dimensions reading from screw gauge= Dia of ball
S.G. Reading = main scale reading +[(pitch/circular scale division) x circular scale division reading]
=2.5+[(0.5/50)x20)]
=2.5=0.2
=2.7mm
Density = mass/ volume
Volume =4/3 pi r³
=10.3065mm³
Density (§ using this symbol for rho)
Mass=m
Volume =v
§= m/v
% error in density = dm/m x100 + (dD/D) 3 x 100
=3.1%
This is ur ans hope it will help you
Similar questions
Social Sciences,
7 months ago
Biology,
7 months ago
Physics,
1 year ago
Math,
1 year ago
Psychology,
1 year ago