The density of an object with Mass=10g and Volume=100 cubic cm
Answers
GIVEN :-
- Mass of an object = 10g
- Volume of the object = 100 cubic cm
TO FIND :-
- Density of the object
SOLUTION :-
We have ,
- Mass = 10g
- Volume = 100 cm³
Relation between Mass , Volume and density is given by ,
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀(OR)
We have ,
- Mass = 10g = 0.01 kg
- Volume = 100 cm³ = 100 × 10⁻⁶ m³ = 10⁻⁴ m³
Since ,
∴ The density of the given object is 0.1 g/cm³ (or) 100 kg/m³
Answer:
GIVEN :-
Mass of an object = 10g
Volume of the object = 100 cubic cm
TO FIND :-
Density of the object
SOLUTION :-
We have ,
Mass = 10g
Volume = 100 cm³
Relation between Mass , Volume and density is given by ,
\large {\underline{\boxed {\red{ \bf{density = \frac{mass}{volume} }}}}}
density=
volume
mass
\begin{gathered} \implies \bf \: density = \frac{10g}{100 \: cm {}^{3} } \\ \\ \implies \bf \: density = \frac{ 1\cancel{0}}{1 \cancel{00}} \\ \\ \implies {\underline {\boxed {\blue {\bf{density = 0.1 \: gcm {}^{ - 3} }}}}}\end{gathered}
⟹density=
100cm
3
10g
⟹density=
1
00
1
0
⟹
density=0.1gcm
−3
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀(OR)
We have ,
Mass = 10g = 0.01 kg
Volume = 100 cm³ = 100 × 10⁻⁶ m³ = 10⁻⁴ m³
Since ,
\large {\underline{\boxed {\red{ \bf{1g = 0.0001 \: kg }}}}}
1g=0.0001kg
\large {\underline{\boxed {\red{ \bf{1cm {}^{3} = 1 \times {10}^{ - 6} \: {m}^{3} }}}}}
1cm
3
=1×10
−6
m
3
\begin{gathered} \implies \bf \: density = \frac{0.01 \: kg}{0.0001 \: m {}^{3} } \\ \\ \implies \bf \: density = \frac{ {10}^{ - 2} \: kg}{ {10}^{ - 4} \: {m}^{3} } \\ \\ \implies \bf \: density = {10}^{ - 2} \times {10}^{ 4} \: kg.m {}^{ - 3} \\ \\ \implies \bf \: density = {10}^{2} kg. {m}^{ - 3} \\ \\ \implies {\underline{ \boxed {\blue {\bf{density = 100 \: kg. {m}^{ - 3} }}}}}\end{gathered}
⟹density=
0.0001m
3
0.01kg
⟹density=
10
−4
m
3
10
−2
kg
⟹density=10
−2
×10
4
kg.m
−3
⟹density=10
2
kg.m
−3
⟹
density=100kg.m
−3
∴ The density of the given object is 0.1 g/cm³ (or) 100 kg/m³