Math, asked by manoramatyagi581, 3 months ago

the depth of the pit.
7. Find the height of the cylinder whose total surface area is 660 cm and diameter is 10 cm.
8. The ratio of radius and height of a cylinder is 5:7 and its volume is 550 cm'. Find its radius and heie​

Answers

Answered by MяMαgıcıαη
148

━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\underline{\bf \green {Questions\::}}}

  • Find the height of the cylinder whose total surface area is 660 cm² and diameter is 10 cm.

  • The ratio of radius and height of a cylinder is 5:7 and it's volume is 550 cm³. Find it's radius and height.

ㅤㅤㅤㅤㅤ━━━━━━━━━━━━━━━━━━━

\underline{\underline{\bf \green {Given}}}\begin{cases} &  \qquad \underline{\sf \red{ In \:1^{st} \:question\::}} \\ & \sf{\bullet\:Total\:surface\;area_{(Cylinder)} = \bf{660\;cm^{2}}} \\ & \sf{\bullet\:Diameter_{(Cylinder)}\:=\:\bf{10\:cm}} \\ &  \qquad \underline{\sf \red { In\:2^{nd}\:question\::}} \\ &  \sf{\bullet\:Ratio\:of\:radius_{(Cylinder)}\:and\:height_{(Cylinder)}\:=\:\bf{5:7}} \\ & \sf{\bullet\:Volume_{(Cylinder)}\:=\:\bf{550\:cm^{3}}}\end{cases}\\ \\

ㅤㅤㅤㅤㅤ━━━━━━━━━━━━━━━━━━━

\underline{\underline{\bf \green {To\:Find}}}\begin{cases} &  \qquad \underline{\sf \red{ In \:1^{st} \:question\::}} \\ & \sf{\bullet\:Height_{(Cylinder)} ? } \\ & \qquad \underline{\sf \red { In\:2^{nd}\:question\::}} \\ &  \sf{\bullet\:Radius_{(Cylinder)}\:and\:height_{(Cylinder)} ? }\end{cases}\\ \\

ㅤㅤㅤㅤㅤ━━━━━━━━━━━━━━━━━━━

\underline{\underline{\bf \green {Solving\:1^{st}\:question\::}}}

\qquad \qquad\tiny  \: {\underline{\rm{\red\bigstar\:Formula \:that \:we \:will \:use \::}}} \\

\orange\bigstar\:\boxed{\boxed{\sf \blue{Total\:surface\:area_{(Cylinder)}\:=\:\bf{2\pi r (h\:+\:r)}}}}

\qquad \qquad\tiny  \: {\underline{\rm{\green\bigstar\:Values\:that\;we\;have\::}}} \\

(i) Total surface area = 660 cm²

(ii) Radius = d/2 = 10/2 = 5 cm

\qquad \qquad\tiny \dag \: {\underline{\frak{Putting\:all\;values\;in\;the\:formula\::}}} \\

:\implies\:\sf 660\:=\:2\:\times\:\dfrac{22}{7}\:\times\:5\:\times\:(h\:+\:5)

:\implies\:\sf 660\:=\:\dfrac{2\:\times\:22\:\times\:5}{7}\:\times\:(h\:+\:5)

:\implies\:\sf 660\:=\:\dfrac{220}{7}\:\times\:(h\:+\:5)

:\implies\:\sf 660\:\times\:\dfrac{7}{220}\:=\:h\:+\:5

:\implies\:\sf \cancel{660}\:\times\:\dfrac{7}{\cancel{220}}\:=\:h\:+\:5

:\implies\:\sf 3\:\times\:7\:=\:h\:+\:5

:\implies\:\sf 21\:=\:h\:+\:5

:\implies\:\sf h\:=\:21\:-\:5

:\implies\:\sf h\:=\:\underline{\bf{16}}

\underline{\boxed {\frak {\therefore \pink {Height_{(Cylinder)}\:\leadsto\:16\:cm}}}}\:\purple\bigstar

ㅤㅤㅤㅤㅤ━━━━━━━━━━━━━━━━━━━

\underline{\underline{\bf \green {Solving\:2^{nd}\:question\::}}}

\qquad \qquad\tiny  \: {\underline{\rm{\red\bigstar\:Formula \:that \:we \:will \:use \::}}} \\

\orange\bigstar\:\boxed{\boxed{\sf \blue{Volume_{(Cylinder)}\:=\:\bf{\pi r^{2} h}}}}

\qquad \qquad\tiny  \: {\underline{\rm{\green\bigstar\:Values\:that\;we\;have\::}}} \\

(i) Volume = 550 cm³

(ii) Ratio of radius and height = 5:7

Let radius and height = 5x and 7x

\qquad \qquad\tiny \dag \: {\underline{\frak{Putting\:all\;values\;in\;the\:formula\::}}} \\

:\longmapsto\:\sf 550\:=\:\dfrac{22}{7}\:\times\:(5x)^{2}\:\times\:7x

:\longmapsto\:\sf 550\:=\:\dfrac{22}{7}\:\times\:25x^{2}\:\times\:7x

:\longmapsto\:\sf 550\:=\:\dfrac{22}{7}\:\times\:175x^{3}

:\longmapsto\:\sf 550\:=\:\dfrac{22}{7}\:\times\:175\:\times\:x^{3}

:\longmapsto\:\sf \dfrac{550\:\times\:7}{22\:\times\:175} = x^{3}

:\longmapsto\:\sf \dfrac{\cancel{550}\:\times\:\cancel{7}}{\cancel{22}\:\times\:\cancel{175}} = x^{3}

:\longmapsto\:\sf \dfrac{25}{25} = x^{3}

:\longmapsto\:\sf \dfrac{\cancel{25}}{\cancel{25}} = x^{3}

:\longmapsto\:\sf 1 = x^{3}

:\longmapsto\:\sf x = \underline{\bf{\sqrt[3]{1}}}

\underline{\boxed {\frak {\therefore \pink {Radius_{(Cylinder)}\:height_{(Cylinder)}\:\leadsto\:5\sqrt[3]{1}\:cm\:and\:7\sqrt[3]{1}\:cm}}}}\:\purple\bigstar

━━━━━━━━━━━━━━━━━━━━━━━━━


MoodyCloud: Greatt!✯
Answered by Anonymous
88

Answer:

r:h=5:7

V=550cm²

d=?

V=πr²h

550=22/7×5y×5y×7y

550×7÷22=25y²×7y

1=y³

y=1cm

⇒r =5cm

d =2r

  =2×5

  =10cm

Similar questions