Math, asked by patilaishwarya2611, 1 day ago

the derivation of y=e^x.logx is

a) e^x[1/x+logx]
b)e^x[1/x-logx]
c)[1/x+logx]
d)[1/x-logx]​

Answers

Answered by amansharma264
43

EXPLANATION.

Derivation : y = eˣ ㏒(x).

As we know that,

Formula of :

Products Rule.

⇒ d/dx [f(x).g(x)] = f(x).d/dx[g(x)] + g(x).d/dx[f(x)].

Using this formula in the equation, we get.

⇒ dy/dx = eˣ.d/dx[㏒(x)] + ㏒(x).d/dx[eˣ].

⇒ dy/dx = eˣ.(1/x) + ㏒(x).eˣ.

⇒ dy/dx = eˣ[1/x + ㏒(x)].

Option [A] is correct answer.

                                                                                                               

MORE INFORMATION.

(1) d/dx (constant) = 0.

(2) d/dx (ax) = a.

(3) d/dx (xⁿ) = nxⁿ⁻¹.

(4) d/dx (eˣ) = eˣ.

(5) d/dx (aˣ) = aˣ.㏒(a).

(6) d/dx (㏒x) = 1/x.

(7) d/dx [㏒ₐ(x)] = 1/x㏒(a).

Answered by Anonymous
17

Step-by-step explanation:

Derivation : y = eˣ ㏒(x).

As we know that,

Formula of :

Products Rule.

⇒ d/dx [f(x).g(x)] = f(x).d/dx[g(x)] + g(x).d/dx[f(x)].

Using this formula in the equation, we get.

⇒ dy/dx = eˣ.d/dx[㏒(x)] + ㏒(x).d/dx[eˣ].

⇒ dy/dx = eˣ.(1/x) + ㏒(x).eˣ.

⇒ dy/dx = eˣ[1/x + ㏒(x)].

Similar questions