The derivative of f(sinx) w.r.t.x, when f(x)=logx is
Answers
Answered by
7
- Given :
f(sinx) w.r.t.x,
- when f(x)=logx
Here
- f(sinx)
f(x) = logx
f(sinx) = log(sinx)
Or
y = log(sinx)
- Let's differentiate w. r. t. x
- Apply chain rule
dy/dx = d{log(sinx)}/d(sinx) . d(sinx)/dx
- Differentiation of logx = 1/x
- sinx = cosx
dy/dx = 1/sinx . cosx
dy/dx = cosx/sinx
- cosx/sinx = cotx
dy/dx = cotx
Answered by
59
Answer:
⏩REQUIRED ANSWER:
f(sinx)
f(x) = logx
f(sinx) = log(sinx)
- y = log(sinx)
♂️Now, Apply chain rule--
- dy/dx = d{log(sinx)}/d(sinx)/dx
➡️dy/dx = 1/sinx ; cosx
➡️dy/dx = cosx/sinx
➡️cosx/sinx = cotx
➡️dy/dx = cotx
Similar questions