Math, asked by minishelare8307, 5 hours ago

The derivative of f(sinx) w.r.t.x, when f(x)=logx is

Answers

Answered by Anonymous
7
  • Given :

f(sinx) w.r.t.x,

  • when f(x)=logx

Here

  • f(sinx)

f(x) = logx

f(sinx) = log(sinx)

Or

y = log(sinx)

  • Let's differentiate w. r. t. x
  • Apply chain rule

dy/dx = d{log(sinx)}/d(sinx) . d(sinx)/dx

  • Differentiation of logx = 1/x
  • sinx = cosx

dy/dx = 1/sinx . cosx

dy/dx = cosx/sinx

  • cosx/sinx = cotx

dy/dx = cotx

Answered by ItzShizuka50
59

Answer:

REQUIRED ANSWER:

f(sinx)

f(x) = logx

f(sinx) = log(sinx)

  • y = log(sinx)

♂️Now, Apply chain rule--

  • dy/dx = d{log(sinx)}/d(sinx)/dx

➡️dy/dx = 1/sinx ; cosx

➡️dy/dx = cosx/sinx

➡️cosx/sinx = cotx

➡️dy/dx = cotx

Similar questions