The derivative of sec (tan√x).
Answers
Answered by
0
Answer:
[sec ( tan (√x)) . tan ( tan (√x))] × [] × [1 / 2√x]
Step-by-step explanation:
y = sec ( tan (√x))
then derivative of y w.r.t x is :
We know the derivative of sec x = sec x . tan x
So, [sec ( tan (√x)) . tan ( tan (√x))] × [derivative of (tan (√x))]
We know derivative of tanx =
⇒ [sec ( tan (√x)) . tan ( tan (√x))] × [] × [derivative of √x]
We know derivative of √x = 1 / 2√x
⇒ [sec ( tan (√x)) . tan ( tan (√x))] × [] × [1 / 2√x]
∴ Derivative of the given expression is :
[sec ( tan (√x)) . tan ( tan (√x))] × [] × [1 / 2√x]
Similar questions