Math, asked by ambikathirumalesh246, 1 day ago

The derivative of sec (tan√x).

Answers

Answered by GeniussSharma
0

Answer:

[sec ( tan (√x)) . tan ( tan (√x))] × [sec^{2} \sqrt{x}] × [1 / 2√x]

Step-by-step explanation:

y = sec ( tan (√x))

then derivative of y w.r.t x is :

We know the derivative of sec x = sec x . tan x

So,  [sec ( tan (√x)) . tan ( tan (√x))] × [derivative of (tan (√x))]

We know derivative of tanx = sec^{2} x

⇒  [sec ( tan (√x)) . tan ( tan (√x))] × [sec^{2} \sqrt{x}] × [derivative of √x]

We know derivative of √x = 1 / 2√x

⇒ [sec ( tan (√x)) . tan ( tan (√x))] × [sec^{2} \sqrt{x}] × [1 / 2√x]

∴ Derivative of the given expression is :

[sec ( tan (√x)) . tan ( tan (√x))] × [sec^{2} \sqrt{x}] × [1 / 2√x]

Similar questions