Math, asked by atm18114, 2 months ago

the derivative of sin inverse (2x √1-x²) w.r.t sin inverse x , 1/√2 <x<1 ,is ​

Answers

Answered by Zara34095
5

Answer:

Let u = sin-1 (2x√(1-x2)

Put x = sin θ

Then u = sin-1 (2 sin θ√(1- sin2 θ)

= sin-1 (2 sin θ√cos2 θ

= sin-1 2 sin θ cos θ

= sin-1 sin 2 θ

= 2 θ

= 2 sin-1x

du/dx = 2/√(1-x2)

Let v = sin-1 (3x – 4x3)

Put x = sin θ

v = sin-1 (3sin θ – 4sin3 θ)

= sin-1 sin 3θ

= 3θ

= 3 sin-1 x

dv/dt = 3/√(1-x2)

du/dv = [ 2/√(1-x2) ]/[ 3/√(1-x2) ]

= 2/3

Step-by-step explanation:

I hope it helps you

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given functions are

\rm :\longmapsto\: {sin}^{ - 1}(2x \sqrt{1 -  {x}^{2} })

and

\rm :\longmapsto\: {sin}^{ - 1}x

Let assume that

\rm :\longmapsto\:u =  {sin}^{ - 1}(2x \sqrt{1 -  {x}^{2} })

and

\rm :\longmapsto\:v =  {sin}^{ - 1}x

Now, Consider

\rm :\longmapsto\:u =  {sin}^{ - 1}(2x \sqrt{1 -  {x}^{2} })

We use method of Substitution to evaluate this.

So, Substitute

\rm :\longmapsto\:x = siny

So, we get

\rm :\longmapsto\:u =  {sin}^{ - 1}(2siny \:  \sqrt{1 -  {sin}^{2} y})

\rm :\longmapsto\:u =  {sin}^{ - 1}(2siny \:  \sqrt{{cos}^{2} y})

\rm :\longmapsto\:u =  {sin}^{ - 1}(2siny \:  cosy)

\rm :\longmapsto\:u =  {sin}^{ - 1}(sin2y )

Now, we know

\boxed{\tt{  {sin}^{ - 1}(sinx) = x \:  \: if \: x \:  \in \: \bigg[ - \dfrac{\pi}{2},\dfrac{\pi}{2}  \bigg]}}

Now, given that

\rm :\longmapsto\:\dfrac{1}{ \sqrt{2} }  &lt; x &lt; 1

\rm :\longmapsto\:\dfrac{1}{ \sqrt{2} }  &lt; siny &lt; 1

\rm\implies \:\dfrac{\pi}{4} &lt; y &lt; \dfrac{\pi}{2}

\rm\implies \:\dfrac{\pi}{2} &lt; 2y &lt; \pi

\rm\implies \: - \dfrac{\pi}{2}  &gt;  -  2y  &gt;  -  \pi

\rm\implies \:\pi - \dfrac{\pi}{2}  &gt; \pi -  2y  &gt; \pi -  \pi

\rm\implies \:\dfrac{\pi}{2}  &gt; \pi -  2y  &gt; 0

\rm\implies \:0 &lt; \pi - 2y &lt; \dfrac{\pi}{2}

Now,

\rm :\longmapsto\:sin(\pi - 2y) = sin2y

So,

\rm :\longmapsto\:u =  {sin}^{ - 1}(sin2y )

can be rewritten as

\rm :\longmapsto\:u =  {sin}^{ - 1}(sin(\pi - 2y ))

\rm :\longmapsto\:u = \pi - 2y

\rm :\longmapsto\:u = \pi - 2 {sin}^{ - 1}x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} u =\dfrac{d}{dx}( \pi - 2 {sin}^{ - 1}x)

\rm :\longmapsto\:\dfrac{du}{dx}  =\dfrac{d}{dx} \pi - 2 \dfrac{d}{dx}{sin}^{ - 1}x

\rm :\longmapsto\:\dfrac{du}{dx}  =0 - 2 \times \dfrac{1}{ \sqrt{1 -  {x}^{2} } }

\rm\implies \:\boxed{\tt{ \dfrac{du}{dx}   \: =  -  \: \dfrac{2}{ \sqrt{1 -  {x}^{2} } }}}

Now, Consider

\rm :\longmapsto\:v =  {sin}^{ - 1}x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}v = \dfrac{d}{dx} {sin}^{ - 1}x

\rm\implies \:\boxed{\tt{ \dfrac{dv}{dx}   \: = \: \dfrac{1}{ \sqrt{1 -  {x}^{2} } }}}

Now, Consider

 \purple{\rm :\longmapsto\:\dfrac{du}{dv}}

\rm \:  =  \: \dfrac{du}{dx} \div \dfrac{dv}{dx}

\rm \:  =  -  \: \dfrac{2}{ \sqrt{1 -  {x}^{2} } }   \div \dfrac{1}{ \sqrt{1 -  {x}^{2} } }

\rm \:  =  \:  - 2

Hence,

\rm\implies \:\boxed{\tt{  \:  \: \dfrac{du}{dv} \:  =  \:  -  \: 2 \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) &amp; \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf k &amp; \sf 0 \\ \\ \sf sinx &amp; \sf cosx \\ \\ \sf cosx &amp; \sf  -  \: sinx \\ \\ \sf tanx &amp; \sf  {sec}^{2}x \\ \\ \sf cotx &amp; \sf  -  {cosec}^{2}x \\ \\ \sf secx &amp; \sf secx \: tanx\\ \\ \sf cosecx &amp; \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  &amp; \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx &amp; \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  &amp; \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions