The diagonal AC and BD ok a rhombus AB C D bisect
each other at right angles at o. Prove that
(i)∆AOB ≈∆COD (i)∆AOD ≈∆COB.
Answers
Answered by
1
In ∆AOB&∆COD
Ao=Co(because dB bisects AC)
OB=OD(because AC bisects BD)
‹AOB=‹COD(=90°)
hence,∆AOB≈∆COD(SAS)
ii)In∆AOD&∆COB
Ao=CO(because AC bisects BD)
OB=OD(because BD bisects AC)
‹AOD=‹COD(=90°)
Similar questions
Geography,
4 months ago
Computer Science,
4 months ago
Biology,
9 months ago
Geography,
9 months ago
Economy,
1 year ago