Math, asked by chanzchnz36, 9 months ago

The diagonal AC and BD ok a rhombus AB C D bisect
each other at right angles at o. Prove that
(i)∆AOB ≈∆COD (i)∆AOD ≈∆COB.​

Answers

Answered by amritraj1357
1

In ∆AOB&∆COD

Ao=Co(because dB bisects AC)

OB=OD(because AC bisects BD)

‹AOB=‹COD(=90°)

hence,∆AOB≈∆COD(SAS)

ii)In∆AOD&∆COB

Ao=CO(because AC bisects BD)

OB=OD(because BD bisects AC)

‹AOD=‹COD(=90°)

Similar questions