The diagonal AC of a parallelogram ABCD intersects DP at the point Q, where 'P' is any point on side AB. Prove that CQ × PQ = QA × QD
Answers
★ Gɪᴠᴇɴ
- ▱ABCD is a parallelogram.
- P is a point on AB
- DP and AC intersect at Q.
☢ R.T.P
- CQ . PQ = QA . QD
☛ Pʀᴏᴏғ
In ∆CQD, ∆AQP
∠QCD = ∠QAP
∠CQD = ∠AQP
∴ ∠QDC = ∠QPA
(∵ Angle sum property of triangles)
This, ∆CQD ∼ ∆ AQP by AAA similarity condition
∴ CQ/AQ = QD/QP = CD/AP
[∵ Ratio of corresponding sides of similar triangles are equal]
⇒ CQ/AQ = QD/QP
⇒ CQ . PQ = QA . QD [Q.E.D]
☞ Hence Proved ☜
Step-by-step explanation:
___________________________________________________
___________________________________________________
.
In ∆CQD, ∆AQP
∠QCD = ∠QAP
∠CQD = ∠AQP
∴ ∠QDC = ∠QPA. (∵ Angle sum property of triangles)
This,
∆CQD ∼ ∆ AQP ....................... AAA similarity condition
....................[∵ Ratio of corresponding sides of similar triangles are equal]
____________________________________________________
__________________________________________________
PLZZ MARK AS BRAINLIEST
___________________________________________________
___________________________________________________
#ʙᴇ ʙʀᴀɪɴʟʏ
___________________________________________________