Math, asked by Anshika111111111, 1 year ago

The diagonal BD of a parallelogram ABCD bisects angles B and D . Prove that ABCD is a rhombus.

Answers

Answered by Skkmr
39
Here!!
I suppose it's correct...
Attachments:

Anshika111111111: but square also has all its sides equal but we have to prove it a rhombus
Skkmr: The angles in a square are 90. But here it is not 90. So it's a rhombus.
Anshika111111111: but how do we come to know that they aren't 90
Skkmr: The angles in a parallelogram aren't 90. So this tells that the angles in rhombus is not 90.
Anshika111111111: OK thank you so much
Answered by Ayesha059
13
We have,

ABCD as the given parallelogram in

 which diagonal BD bisects ∠B and ∠D.

Since, BD bisects ∠B, then

∠ABD = ∠CBD   = 

1

2

∠ABC          ...

.(1)

Since, BD bisects ∠D, then

∠ADB = ∠CDB =   

1

2

∠ADC           ...

.(2)

now, ∠ABC = ∠ADC 

 [Opposite angles of 



gm

 are equal]



1

2

∠ABC = 

1

2

∠ADC

⇒∠ABD = ∠ADB  and  ∠CBD  = 

∠CDB   [Using (1) and (2)]

⇒AD = AB  and CD = BC  

 [Angles opposite to equal sides are equal]

   .....(3)

Since, ABCD is a parallelogram, then

AB = CD and AD = BC  

 [Opposite sides of 



gm 

 are equal]    ...

..(4)

Now, from (3) and (4), we get

     AB = BC = CD = AD

⇒ABCD is a rhombus.

Attachments:
Similar questions