Math, asked by dganga207, 4 months ago

the diagonal of a parallelogram ABCD intersect at p if angle BPC is equal to 85 degree and angle BDC us equal to 65 degree find the angle PAB

Answers

Answered by sukhwinderm9
0

The angle PAB=20 degrees.

Step-by-step explanation:

By definition of parallelogram

AB\parallel CD,BC\parallel ADAB∥CD,BC∥AD

AB=CD,BC=ADAB=CD,BC=AD

Angle BPC=85 degrees

Angl BDC=65 degrees

Angle BPC+angle APB=180 degrees (linear angles)

Using linear angle property

Substitute the value

85+\angle APB=18085+∠APB=180

\angle APB=180-85=95^{\circ}∠APB=180−85=95

\angle ABP=\angle BDC=65∠ABP=∠BDC=65

By using Alternate Interior angles theorem

In triangle APB

\angle ABP+\angle APB+\angle PAB=180^{\circ}∠ABP+∠APB+∠PAB=180

Using triangle angles sum property

Substitute the values then, we get

65+95+\angle PAB=180^{\circ}65+95+∠PAB=180

160+\angle PAB=180160+∠PAB=180

\angle PAB=180-160=20^{\circ}∠PAB=180−160=20

Hence, the angle PAB=20 degrees.

Answered by gamingrajputana21
0

Step-by-step explanation:

  The angle PAB=20 degrees.

Step-by-step explanation:

By definition of parallelogram

Angle BPC=85 degrees

Angl BDC=65 degrees

Angle BPC+angle APB=180 degrees (linear angles)

Using linear angle property

Substitute the value

By using Alternate Interior angles theorem

In triangle APB

Using triangle angles sum property

Substitute the values then, we get

Hence, the angle PAB=20 degrees.

Similar questions