Math, asked by rinabacchewar1, 3 months ago

The diagonal of a quadrikateral shaped field is 24m,and perpendicular dropped on it from the remaining opposite vertices are 10m and 14m. Find the area of the fields .write answer step by step.​

Answers

Answered by OyeeKanak
44

 \huge{ \mathfrak{ \pink{Correct  \: Question:- }}}

  • The diagonal of a quadrilateral shaped field is 24m,and perpendicular dropped on it from the remaining opposite vertices are 10m and 14m. Find the area of the fields .

 \huge{ \mathfrak{ \green{Given:-}}}

  • Length of diagonal d = 24

  • Length of perpendicular dropped on BD
  • h_1 = 10m \\ h_2 = 14m

 \huge { \mathfrak { \orange{To  \: find:- }}}

  • Area of the field

 \huge { \mathfrak{ \red{✍Solution:- }}}

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mapsto \bf \: Area \:  of \:  field= \frac{d}{2} (h_1 + h_2)

\\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mapsto \:   \frac{24}{2}  \times (10 + 14) {m}^{2}

\\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mapsto \: 12  \times  24 {m}^{2}

\\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mapsto \: 288 {m}^{2}

 \boxed{ \sf{ \red{ \therefore \:  the \:  area  \: of  \: field \:  is{ \boxed{ \mathfrak{ \pink{ 288m²}}}}}}}

 \color{goldenrod}━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Step-by-step explanation:

⠀\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\: Area:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}

 \color{red}━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions