Math, asked by av1266108, 10 months ago

the diagonal of a quadrilateral is 30 cm in the length and the lengths of perpendiculars to it from the opposite vertices are 8 cm 10 cm find the area of the quadrilateral​

Answers

Answered by Anonymous
18

Given :

 \:  \:  \:  \:  \:  \:  \:  \: \bullet  \:  \: \sf  Diagonal \: (d) = 30 \: cm \\  \\ \:  \:  \:  \:  \:  \:  \:  \: \bullet  \:  \: \sf  Perpendicular  \: ( h_1) = 8 \: cm \\  \\ \:  \:  \:  \:  \:  \:  \:  \: \bullet  \:  \: \sf  Perpendicular  \: ( h_2) = 30 \: cm

To Find :

 \:  \:  \:  \:  \:  \:  \:  \:  \bullet \:  \sf Area \: of \: quadrilateral

Solution :

Formula to find area of quadrilateral is

\large \implies\boxed{ \boxed{\sf Area =  \dfrac{1}{2} \times d(h_1 + h_2)}} \\  \\ \implies \sf \frac{1}{2} \times 30(10 + 18) \\  \\ \implies\sf15 \times 18 \\  \\ \implies \sf270 \\  \\\large\underline{ \green{ \sf Area \: of \: quadrilateral = 270 \:  {cm}^{2}} }

Attachments:
Answered by saumitrasingh75
3

Step-by-step explanation:

here is the correct answer plz mark me brainliest may not use the following

Similar questions