Math, asked by patelpranay55555, 3 months ago

The diagonal of a quadrilateral shaped field is 36 m and the perpendicualr dropped on it from the remaining opposite vertices  are 9 m (h1) and 13 m (h2). Find the area of the field. 

396 m²
792 m²
175 m²
117 m²​

Answers

Answered by MrAnonymous412
8

 \\    \color{violet} \large\underline{\sf \: Question :- } \\

The diagonal of a quadrilateral shaped field is 36 m and the perpendicualr dropped on it from the remaining opposite vertices  are 9 m (h1) and 13 m (h2). Find the area of the field. 

 \\    \color{violet} \large\underline{\sf \: Solution :- } \\

 \\  \\  \sf \:  \:  \:  \: Given \\  \\

 \\  \\  \sf \:  \: Length  \: of \:  diagonal = d = 36 \:  m \\

 \\  \\  \sf \:  \: Length  \: of \:  perpendicular \: dropped \: on \: BD  \\  \sf  h_1= 13 \:  m \: and \: h_2 = 9 \: m  \\  \\

 \\  \\  \sf \:  \: Now, \\  \\

 \\  \\  \sf \:  \: Area \: of \: ABCD  \:  =  \:  \frac{d}{2}  \times (h_1  + h_2) \\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: :  \implies \:  \frac{36}{2}  \times (13  + 9) \\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: :  \implies \:  \frac{36}{2}  \times 22 \\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: :  \implies \:  18  \times 22 \\  \\

 \\  \\   \:  \therefore \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \underline{\boxed{  \orange{\tt Area \: of \: ABCD \:  =  \: 396 {m}^{2} }}} \\  \\

So, Option A is correct.

Answered by Anonymous
27

\underline{\boxed{\bold{ \bigstar \; Question \; \bigstar }}}  \; \; \; \;

The diagonal of a quadrilateral shaped field is 36 m and the perpendicular dropped on it from the remaining opposite vertices  are 9 m (h_{1} ) and 13 m (h_{2} ). Find the area of the field.  

a) 396 m²

b) 792 m²

c) 175 m²

d) 117 m²​

\underline{\boxed{\bold{ \bigstar \; Answer \; \bigstar }}}  \; \; \; \;

Given:-

Length of diagonal = 36cm

Length of perpendicular dropped on AC/BD -

h_{1} = 9m

h_{2} = 13m

Let the length of diagonal be 'd'

So, area of ABCD = \frac{d}{2} × (h_{1} + h_{2})

                       = \frac{36}{2} × (9 + 13)

                       = 18 × 22

                        = 396m²

∴ Area of field ABCD = 396m²

⇒ Option A is correct.

Hope this helps uh! ♡

Similar questions