the diagonal of a rectangle is 10 centimetre and it's breadth is 6 cm. What is its length.
Answers
Required Solution:
★ 8 cm ★
Given:
• Diagonal of rectangle = 10 cm
• Breadth of rectangle = 6 cm
To calculate:
• Length
Calculation:
★
But, according to the question:
Hence, length of the rectangle is 8 cm.
________________________________
Verification:
★
Inserting values:
LHS = RHS
Hence, verified!
_________________________________
More formulae related to rectangle:
✓Verified Answer
Required Solution:
★ 8 cm ★
Given:
• Diagonal of rectangle = 10 cm
• Breadth of rectangle = 6 cm
To calculate:
• Length
Calculation:
★ \boxed {\sf { {Diagonal}_{(Rectangle)} = \sqrt { {l}^{2} + {b}^{2}}}}
Diagonal
(Rectangle)
=
l
2
+b
2
But, according to the question:
\sf{ \implies10 = \sqrt{ {l}^{2} + {6}^{2} } }⟹10=
l
2
+6
2
\sf{ \implies {10}^{2} = {l}^{2} + {6}^{2} }⟹10
2
=l
2
+6
2
\sf{ \implies {l}^{2} = 100 - 36 }⟹l
2
=100−36
\sf{ \implies {l}^{2} = 64 }⟹l
2
=64
\sf{ \implies l = \sqrt{64}}⟹l=
64
\sf\red{ \implies l = 8 \: cm}⟹l=8cm
Hence, length of the rectangle is 8 cm.
________________________________
Verification:
★ \boxed {\sf { {Diagonal}_{(Rectangle)} = \sqrt { {l}^{2} + {b}^{2}}}}
Diagonal
(Rectangle)
=
l
2
+b
2
Inserting values:
\sf{ \implies10 = \sqrt{ {8}^{2} + {6}^{2} } }⟹10=
8
2
+6
2
\sf{ \implies10 = \sqrt{ 64 + 36 } }⟹10=
64+36
\sf{ \implies10 = \sqrt{ 100 } }⟹10=
100
\sf{ \implies10 = 10 }⟹10=10
LHS = RHS
Hence, verified!
_________________________________
More formulae related to rectangle:
\sf {\bullet \: Perimeter = 2(l+b) }∙Perimeter=2(l+b)
\sf {\bullet \: Area = l \times b }∙Area=l×b
\sf {\bullet \: Diagonal =\sqrt { {l}^{2} + {b}^{2}} }∙Diagonal=
l
2
+b
2