Math, asked by Mister360, 3 months ago

The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.

Answers

Answered by gangadhar825
2

Step-by-step explanation:

Let the length of the shorter side be x metres.

The length of the diagonal= 60+x metres

The length of the longer side =30+x metres

Applying Pythagoras theorem,

Diagonal²=longer side²+shorter side²

(60+x) ²= (30+x) ² + x²

3600+120x+x²=900+60x+x²+x²

2700+60x-x²=0

2700+90x-30x-x²=0

90(30+x)-x(30+x) =0

X=90,

Shorter side is 90m, longer side is 90+30=120m

please mark as brainliest

And Happy Holi

Attachments:
Answered by ItzMeMukku
15

\huge\tt{Answer}

\sf\color{red}Let the shorter side of the rectangle be x m.

\sf\color{red}Then, larger side of the rectangle = (x + 30) m

\sf\color{red} x2 + (x + 30)2 = (x + 60)2

\sf\color{red}x2 + x2 + 900 + 60x = x2 + 3600 + 120x

\sf\color{red} x2 -\: 60x - \:2700\: = 0</p><p>

\sf\color{red}x2 - \:90x +\: 30x - \:2700 \:= 0

\sf\color{red} x\:(x - 90) + \:30(x -90)

\sf\color{red}(x - 90)\:(x + 30)\: = 0

\sf\color{red}x = 90,\: -30

\sf\color{red}However, \:side\: cannot\: be \:negative.\: Therefore\:, the\: length \:of \:the \:shorter\: side\: will\: be\: 90 m.

\sf\color{red}Hence,\: length\: of\: the \:larger \:side \:will \:be\: (90 + 30)

\bold\pink{\fbox{\sf{m = 120 m.}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━

All done :)

Thankyou :)

Similar questions