Math, asked by sagacioux, 1 month ago

The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.​

Answers

Answered by Anonymous
144

Answer:

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}\end{gathered}

  • ➳ The diagonal of a rectangular field is 60 metres more than the shorter side.
  • ➳ The longer side of Rectangular field is 30 metres more than the shorter.

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{To Find :}}}}}}\end{gathered}

  • ➳ Sides of Rectangular field

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}\end{gathered}

\bigstar{\underline{ \underline{\pmb{\frak{\red{Let  \: the : }}}}}}

  • ➺ The shorter side of rectangle = x metres
  • ➺ The diagonal of rectangle = (x + 60) metres
  • ➺ The longer side of rectangle = (x + 30) metres

\rule{200}2

\bigstar{\underline{ \underline{\pmb{\frak{\red{According \: to \: pythagoras\:  theorem: }}}}}}

{: \implies{\sf{ {(Diagonal)}^{2}  = ({Longer  \: Side})^{2}  + (Small  \: Side )^{2}}}}

  • Substituting the values

{: \implies{\sf{ {(x + 60)}^{2}  = (x + 30)^{2}  + (x )^{2}}}}

{: \implies{\sf{ {( {x}^{2}  + 120x + 3600)}= {x}^{2} +  {x}^{2} + 60x + 900 }}}

{: \implies{\sf{ { {x}^{2}  + 60x  - 120x + 900 - 3600 = 0}}}}

{: \implies{\sf{ { {x}^{2} - 60x  - 2700 = 0}}}}

{: \implies{\sf{ { {x}^{2} - 90x + 30x  - 2700 = 0}}}}

{: \implies{\sf{ { {x( x- 90)+ 30 - (x - 90) = 0}}}}}

{: \implies{\sf{ { {( x -  90)+ (x  +  30) = 0}}}}}

{: \implies{\sf{x = 90,  -30}}}

  • We ignore –30. Since length cannot be in negative.

\rule{200}2

\bigstar{\underline{ \underline{\pmb{\frak{\red{Hence : }}}}}}

  • ➳ Shorter side = x = 90 metres
  • ➳ Longer side = x + 30 = 90 + 30 = 120 metres

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Answer :}}}}}}\end{gathered}

  • ➽ The shorter side of Rectangular field is 90 m.
  • ➽ The longer side of Rectangular field is 120 meter.

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Learn More :}}}}}}\end{gathered}

\;\sf{\leadsto\;\;Area\;\;of\;\;Square\;=\;(Side)^{2}}

\;\sf{\leadsto\;\;Area\;\;of\;\;Rectangle\;=\;Length\;\times\;Breadth}

\;\sf{\leadsto\;\;Area\;\;of\;\;Circle\;=\;\pi r^{2}}

\;\sf{\leadsto\;\;Area\;\;of\;\;Triangle\;=\;\dfrac{1}{2}\;\times\;Base\;\times\;Height}

\;\sf{\leadsto\;\;Area\;\;of\;\;Parallelogram\;=\;Base\;\times\;Height}

\;\sf{\leadsto\;\;Perimeter\;\;of\;\;Square\;=\;4\;\times\;(Side)}

\;\sf{\leadsto\;\;Perimeter\;\;of\;\;Rectangle\;=\;2\;\times\;(Length\;+\;Breadth)}

\;\sf{\leadsto\;\;Perimeter\;\;of\;\;Circle\;=\;2\pi r}

Answered by BrainlyPrivacy
53

Given :-

  • The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side.

To Find :-

  • The sides of the field ?

Solution :-

  • Let shorter side be x m
  • diagonal = ( x + 60) m
  • longer side = (x + 30) m

We know that,

  • In right ∆ ABC

Using formula,

  • (AC)² = (AB)² + (BC)²

Putting all values in formula,

➻ (x + 60)² = (x)² + (x + 30)²

➻ (x)² + 2 × x × 60 + (60)² = x² + (x)² + 2 × x × 30 + (30)²

➻ x² + 120x + 3600 = x² + x² + 60x + 900

➻ x² + 60x + 900 - 120x - 3600 = 0

➻ x² - 60x - 2700 = 0

➻ x² - 90x - 30x - 2700 = 0

➻ x(x - 9) + 30(x - 90) = 0

(x - 90) ( x + 30) = 0

Now,

➻ (x - 90) = 0

➻ x = 0 + 90

x = 90

Then,

➻ (x + 30) = 0

➻ x = 0 - 30

x = -30

  • Hence, the side of the field cannot be negative so, the length of the shorter side will be 90m. and length of longer side will be (x + 30) = (90 + 30) = 120 m.

▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅

Attachments:
Similar questions