Math, asked by hello2sanjeev12345, 11 months ago

The diagonal of a rhombus are 5.2cm and 8.5cm , respectively. A parallelogram equal in area to this rhombus has one of its parallel sides 5cm . Find the corresponding altitude .​

Answers

Answered by Anonymous
22

\bf{\Huge{\underline{\boxed{\bf{\red{ANSWER\::}}}}}}

\bf{\Large{\underline{\sf{\green{Given\::}}}}}

The diagonal of a rhombus are 5.2cm & 8.5cm respectively. A parallelogram equal in area to this rhombus has one its parallel side is 5cm.

\bf{\Large{\underline{\sf{\violet{To\:find\::}}}}}

The corresponding altitude of parallelogram.

\bf{\Large{\underline{\sf{\blue{Explanation\::}}}}}

We know that formula of the area of rhombus:

\bf{\frac{1}{2} *D1*D2}   [sq.units]

\bf{We\:have\begin{cases}\sf{The\:first\:diagonal\:of\:rhombus[D1]=5.2cm}\\ \sf{The\:second\:diagonal\:of\:rhombus[D2]=8.5cm}\end{cases}}

So,

\longmapsto\bf{Area=\frac{1}{2} *D1*D2}

\longmapsto\bf{Area=\frac{1}{2} *5.2cm*8.5cm}

\longmapsto\bf{Area=(\frac{1}{\cancel{2}} *\cancel{5.2}*8.5)cm^{2}}

\longmapsto\bf{Area=(2.6*8.5)cm^{2} }

\longmapsto\bf{Area=22.1cm^{2} }

We know that area of parallelogram: (Base × Height)    [sq.units]

A/q

Area of parallelogram = Area of rhombus

\bf{Base*Height=\frac{1}{2} *D1*D2}

→ 5cm × Height = 22.1cm²

→ Height = \bf{\cancel{\frac{22.1cm^{2} }{5cm} }}

→ Height = 4.42cm

Thus,

The corresponding altitude is 4.42cm.


Anonymous: Well going!
Answered by Anonymous
37

Question :

The diagonal of a rhombus are 5.2 cm and 8.5 cm, respectively. A parallelogram equal in area to the rhombus, has one of its parallel sides 5 cm . Find the corresponding altitude .

Solution :

\underline{\bold{Given :}}

  • First diagonal of the rhombus = 5.2 cm
  • Second diagonal of the rhombus = 8.5 cm
  • Base of the parallelogram=5 cm

\underline{\bold{To\:Find:}}

  • The corresponding altitude of the parallelogram.

\because{Area\:of\:the\:parallelogram =Area\:of\:the\:rhombus}

\boxed{\purple{Area\:of\:rhombus=\frac{1}{2} \times  Product \:  of  \: its  \: diagonals}}

\implies Area\:of\:the\:rhombus=\frac{1}{2} \times  Product \:  of  \: its  \: diagonals\\\implies Area\:of\:the\:rhombus=\frac{1}{2} \times (5.2\:cm\times 8.5\:cm)\\\implies Area\:of\:the \:rhombus=\frac{1}{2} \times 44.2\:cm^2\\\implies Area\:of\:the\:rhombus=22.1\:cm^2

\therefore{Area\: of\:the\: parallelogram=22.1\:cm^2}

\rule {193}{1}

\boxed{\blue{Area\:of\: parallelogram =Base \times Height}}

\implies Area \:of\:the \: parallelogram =Base \times Height\\\implies 22.1\:cm^2=5\:cm \times Height\\\implies \frac {22.1\:cm^2}{5\:cm}=Height\\\implies 4.42\:cm =Height\\\implies Height=4.42\:cm

\boxed {\green{\therefore{The\: corresponding\: altitude \:of\:the\: parallelogram=4.42\:cm}}}


Anonymous: Well done !!
Similar questions