Math, asked by missurahul5, 18 days ago

The diagonal of a rohambus are 12cmand 16cm.find altitude

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that diagonals of a rhombus are 12 cm and 16 cm.

It means

\rm \: d_1 = 12 \: cm \\

\rm \: d_2 = 16 \: cm \\

Let assume that side of a rhombus be a cm and its altitude is h cm.

We know, diagonals and side of a rhombus are connected by the relationship

\rm \:  {4a}^{2} \:  =  \:  {d_1}^{2} +  {d_2}^{2}  \\

So, on substituting the values, we get

\rm \:  {4a}^{2} \:  =  \:  {12}^{2} +  {16}^{2}  \\

\rm \:  {4a}^{2} \:  =  \:  144 + 256  \\

\rm \:  {4a}^{2} \:  =  \:  400  \\

\rm \:  {a}^{2} \:  =  \:  100  \\

\rm \:  {a}^{2} \:  =  \:   {10}^{2}   \\

\rm\implies \:a \:  =  \: 10 \: cm \\

Now, we know that

\color{green}\boxed{ \rm{ \:Area_{(rhombus)} =  \frac{1}{2} \times d_1 \times d_2 = a \times h \: }} \\

So,

\rm \: \dfrac{1}{2} \times d_1 \times d_2 = a \:  \times  \: h \\

On substituting the values, we get

\rm \: \dfrac{1}{2} \times 12 \times 16 = 10 \:  \times  \: h \\

\rm \: 6 \times 16 = 10 \:  \times  \: h \\

\rm \: 10h = 96 \\

\rm\implies \:h \:  =  \: 9.6 \: cm \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Attachments:
Similar questions