Math, asked by sahoomuskan4, 5 hours ago

The diagonal of a square is 4√3 cm and the area of an equilateral triangle is√3 Times the area of the square. What is the length of the side of the triangle?​

Answers

Answered by Anonymous
50

STEP-BY-STEP EXPLANATION:

.

Diagonal_{(Square)} = 4 \sqrt{3}  \:  \:  \: ...(given) \\

\implies (Side \:of  \: Square ) \sqrt{2}  = 4 \sqrt{3}  \\

\implies Side \: of  \: Square  =  \frac{4 \sqrt{3}}{ \sqrt{2} }  \\

\implies Side \: of  \: Square  =  \frac{4 \sqrt{3}}{ \sqrt{2} } \times  \frac{ \sqrt{2} }{ \sqrt{2} }   \\

\implies Side \: of \:  Square  =  \frac{4 \sqrt{6}}{ {2} }   \\

\implies Side  \: of  \: Square =  2 \sqrt{6}cm   \\  \\

Area_{(Square)} = (Side)^{2}  \\

\implies Area_{(Square)} = (2 \sqrt{6} )^{2}  \\

\implies Area_{(Square)} = 4 \times  {6}   \\

\implies Area_{(Square)} = 24 {cm}^{2}    \\  \\

Area_{(Equilateral \:  ∆)} =  \sqrt{3}   \times  Area_{(Square)}  \:  \:  \: ...(given)\\

\implies Area_{(Equilateral \:  ∆)} =  \sqrt{3}   \times  24 {cm}^{2} \\

\implies Area_{(Equilateral \:  ∆)} = 24 \sqrt{3}  {cm}^{2} \\

\implies  \frac{ \sqrt{3} }{4} \times  {(Side \:  of  \: Equilateral  \: ∆)}^{2}   = 24 \sqrt{3}  {cm}^{2} \\

\implies    {(Side \:  of  \: Equilateral  \: ∆)}^{2}   = 24  \cancel{\sqrt{3}}   \times  \frac{4}{  \cancel{\sqrt{3}} } \\

\implies    {(Side \:  of  \: Equilateral  \: ∆)}^{2}   = 96 {cm}^{2}  \\

\implies    {Side \:  of  \: Equilateral  \: ∆} =  \sqrt{96 {cm}^{2}}  \\

\implies    {Side \:  of  \: Equilateral  \: ∆} =  4\sqrt{6}cm \\   \\

REQUIRED ANSWER,

.

  •  {Side \:  of  \: Equilateral  \: ∆} =  4\sqrt{6}cm \\

Answered by ms1763334
0

Answer:

answer of this question is 8 cm .

Similar questions