The diagonal of a trapezium ABCD in which AB|| DC , intersect at O.If AB = 2CD then find the ratio of area of triangels AOB and COD.
# Content Qualtity #
# No Spam # It will be reported ##...
Answers
Answered by
3
by the Thales theoram or property of similarity
given =AB = 2CD
AB /CD = 2/1
In tri.AOB and COD
area of triangle AOB / AREA OF tri. COD
BY APPLYING SIDES = 2/1
AB2 / CD2
AB = 2
CD =1
RATIO IS AB2 / CD2
4:1
given =AB = 2CD
AB /CD = 2/1
In tri.AOB and COD
area of triangle AOB / AREA OF tri. COD
BY APPLYING SIDES = 2/1
AB2 / CD2
AB = 2
CD =1
RATIO IS AB2 / CD2
4:1
Anonymous:
Are double thanks to you
Answered by
6
Hey See the attached pic
_____________________________________________________________________________________________
Given :-
ABCD is a Trapezium , AB parallel DC , Diagonal intersect at O and AB = 2 DC
_______________________________
Find :-
ΔAOB ÷ ΔCOD
_______________________________
Proof :-
In ΔAOB and ΔCOD
∠DOC = ∠BOA (V•O•A)
∠CDO = ∠ABO (A•I•A)
So :-
Δ AOB ≈ Δ COD (Similarity Rule)
Now :-
ar(ΔAOB) ÷ (ΔCOD) = AB² ÷ CD²
(2CD)² ÷ (CD)²
(4CD)² ÷ (CD)²
= 4
ar(ΔAOB) : ar(ΔCOD)
= 4 : 1
_____________________________________________________________________________________________
Regards :)
★ Cybary ★
★ Be Brainly ★
_____________________________________________________________________________________________
Given :-
ABCD is a Trapezium , AB parallel DC , Diagonal intersect at O and AB = 2 DC
_______________________________
Find :-
ΔAOB ÷ ΔCOD
_______________________________
Proof :-
In ΔAOB and ΔCOD
∠DOC = ∠BOA (V•O•A)
∠CDO = ∠ABO (A•I•A)
So :-
Δ AOB ≈ Δ COD (Similarity Rule)
Now :-
ar(ΔAOB) ÷ (ΔCOD) = AB² ÷ CD²
(2CD)² ÷ (CD)²
(4CD)² ÷ (CD)²
= 4
ar(ΔAOB) : ar(ΔCOD)
= 4 : 1
_____________________________________________________________________________________________
Regards :)
★ Cybary ★
★ Be Brainly ★
Attachments:
Similar questions