The diagonal of the rhombus are 48cm and 20cm long. Find area and perimeter of the rhombus.
Answers
- The diagonal of the rhombus = 48cm & 20cm long.
- Area and perimeter of the rhombus
Area of rhombus = ½ × product of diagonals
→ ½ × AC × BD
→ ½ × 48 × 20
→ 24 × 20
→ 480 cm²
Now in ∆ AOB, By Pythagoras theorem
➪ (AB)² = (BO)² + (AO)²
➪ AB² = (10)² + (24)²
➪ AB² = 100 + 576
➪ AB = √676
➪ AB = 26 cm
Now, Perimeter of rhombus = 4 × a
➵ 4 × 26
➵ 104 cm
Hence,
Answer:
The diagonal of the rhombus = 48cm & 20cm long.
\huge\underline{\boxed{\mathfrak{\green{To \ find}}}}To find
Area and perimeter of the rhombus
\huge\underline{\boxed{\mathfrak{\blue{Solution}}}}Solution
Area of rhombus = ½ × product of diagonals
→ ½ × AC × BD
→ ½ × 48 × 20
→ 24 × 20
→ 480 cm²
\texttt{AO = OC = 48/2 = 24 cm }AO = OC = 48/2 = 24 cm
\texttt{BO = OD = 20/2 = 10 cm }BO = OD = 20/2 = 10 cm
Now in ∆ AOB, By Pythagoras theorem
➪ (AB)² = (BO)² + (AO)²
➪ AB² = (10)² + (24)²
➪ AB² = 100 + 576
➪ AB = √676
➪ AB = 26 cm
\bf AB \:=\: BC\: =\: CD\: = \:DA\: =\: 26 cmAB=BC=CD=DA=26cm
Now, Perimeter of rhombus = 4 × a
➵ 4 × 26
➵ 104 cm
Hence,
\:\:\:\bullet\:\:\bf Area \:of\: Rhombus \: =\: {\orange{480 \:cm^2}}∙AreaofRhombus=480cm2
\:\:\:\bullet\:\:\bf Perimeter\: of \:Rhombus\: =\: {\orange{104 \:cm}}∙PerimeterofRhombus=104cm