The diagonals AC and BD of a parallelogram ABCD intersect each other at point O. If Angle DAC=32° and then Angle AOB=70° then DBC is equal to
Answers
Hence ∠DBC = 41°.
Step-by-step explanation:
Given:
∠DAC=32° and ∠AOB=70°
Here ABCD is a parallelogram.
Therefore, AD | | BC
So, ∠ACB = ∠DAC = 32° [1]
Now, ∠AOB is an exterior angle of △BOC,
∴ ∠OBC +∠ OCB = ∠AOB [∵ exterior ∠ = sum of two interior opposite angles]
⇒ ∠OBC + 34° = 75° [from (1) ∠ACB=∠AOB=32° ]
⇒ ∠OBC = 75° - 34° = 41°
or ∠DBC = 41°
Hence ∠DBC = 41°.
Answer:
Hence ∠DBC = 41°.
Step-by-step explanation:
Given:
∠DAC=32° and ∠AOB=70°
Here ABCD is a parallelogram.
Therefore, AD | | BC
So, ∠ACB = ∠DAC = 32° [1]
Now, ∠AOB is an exterior angle of △BOC,
∴ ∠OBC +∠ OCB = ∠AOB [∵ exterior ∠ = sum of two interior opposite angles]
⇒ ∠OBC + 34° = 75° [from (1) ∠ACB=∠AOB=32° ]
⇒ ∠OBC = 75° - 34° = 41°
or ∠DBC = 41°
Hence ∠DBC = 41°.