The diagonals AC and BD of a rhombus intersect each other at 0. Prove that:
AB2+ BC2 + CD2 + DA2 = 4(0A2 + OB2)
Answers
Answered by
3
Answer:
The diagonals AC and BD of a rhombus intersect each other at O.
Diagonal of rhombus bisect each other perpendicularly
=> OA = OC = AC/2
& OB = OD = BD/2
Applying Pythagorean theorem
AB² = OA² + OB²
BC² = OB² + OC²
CD² = OC² + OD²
DA² = OD² + OA²
Adding all
=> AB² + BC² + CD² + DA² = OA² + OB² + OB² + OC² + OC² + OD² + OD² + OA²
using OA = OC & OB = OD
=>AB² + BC² + CD² + DA² = OA² + OB² + OB² + OA² + OA² + OB² + OB² + OA²
=> AB² + BC² + CD² + DA² = 4OA² + 4OB²
=> AB² + BC² + CD² + DA² = 4(OA² + OB²)
QED
Proved
Similar questions
English,
3 months ago
Social Sciences,
3 months ago
Hindi,
3 months ago
Math,
7 months ago
Social Sciences,
11 months ago
English,
11 months ago
English,
11 months ago